- #1
TheSodesa
- 224
- 7
Homework Statement
The probability density function for a random vector ##(X,Y)## is ##f(x,y) = 3x##, when ##0 < y< x < 1##. Calculate the conditional probability
[tex]P(X> \frac{1}{2} | Y > \frac{1}{3})[/tex]
Homework Equations
Conditional probability:
\begin{equation}
P(A | B) = \frac{P(A \cap B)}{P(B)}
\end{equation}
Random vector density function:
\begin{equation}
P(A) = P((X,Y) \in A) = \int \int_{A} f(x,y) dx dy = \int \int_{A \cap \Omega} f(x,y) dx dy
\end{equation}
Marginal density function(s):
\begin{equation}
f_1(x) = \int_{-\inf}^{\inf} f(x,y) dy\\
\text{ and }\\
f_2(y) = \int_{-\inf}^{\inf} f(x,y) dx
\end{equation}
The Attempt at a Solution
Here ##P(X> \frac{1}{2} | Y>\frac{1}{3}) = \frac{P(X> \frac{1}{2} \cap Y>\frac{1}{3})}{P(Y>\frac{1}{3})}##.
The numerator is a part of a triangle below the line ##y = x## (area A in the picture below), whereas the denominator's domain is the entire triangle (A + B). The reason is that presumably ##f(x,y) = 0## above the line ##y = x##.
Now we calculate the numerator and denominator separately:
\begin{align*}
P(X> \frac{1}{2} \cap Y>\frac{1}{3})
&= \int_{1/2}^{1} \int_{1/3}^{x} 3x dy dx\\
&= \int_{1/2}^{1} \left[ 3xy \right]_{1/3}^{x} dx\\
&= \int_{1/2}^{1} 3x^2 - x dx\\
&= \left[ x^3 - \frac{1}{2}x^2\right]_{1/2}^{1}\\
&= 1/2
\end{align*}
For the denominator we need the density function of the marginal distribution of ##Y##, since the probability is only observed from its perspective:
\begin{align*}
f_2(y) = \int_{y}^{1} 3x dx = \left[ \frac{3}{2}x^2 \right]_{y}^{1} = \frac{3}{2} - \frac{3}{2}y^2
\end{align*}
Then
\begin{align*}
P(Y > \frac{1}{3})
&= \int_{1/3}^{1} \int_{1/3}^{x} \frac{3}{2} - \frac{3}{2}y^2 dy dx\\
&= \int_{1/3}^{1} \left[ \frac{3}{2}y - \frac{1}{2}y^3 \right]_{1/3}^{x} dx\\
&= \int_{1/3}^{1} \frac{3}{2}x - \frac{1}{2}x^3 - \frac{1}{2} + \frac{1}{54} dx\\
&= \left[ \frac{3}{4}x^2 - \frac{1}{8}x^4 - \frac{26}{54}x \right]_{1/3}^{1}\\
&= \frac{3}{4} - \frac{1}{8} - \frac{26}{54} - \frac{1}{12} + \frac{1}{216} + \frac{26}{162}\\
&= 73/324
\end{align*}
Now it's obvious that if I calculate the assigned conditional probability, it will be greater than ##1##. Where did I go wrong with this one?
\begin{align*}
\end{align*}