- #1
lorenz0
- 148
- 28
- Homework Statement
- Consider a long conducting cylinder, of radius ##R_1##. It is surrounded by two conducting cylindrical shells, the first one with internal radius ##R_2## and external radius ##R_3## and the second one with internal radius ##R_4## and external radius ##R_5##. If we put a charge density ##+\lambda## on the conducting inner cylinder of radius ##R_1## the first shell at ##R_2## gets a charge density ##-\lambda##, at ##R_3## it gets ##+\lambda## and the second shell at ##R_4## gets a charge density ##-\lambda## at ##R_4## and ##+\lambda## at ##R_5##.
(a) Knowing that the inner cylinder and the outermost shell are mantained at a known potential difference ##\Delta V##, find out the value of ##\lambda## (assuming the various radii are known.)
(b) Now the outermost shell is connected to the ground. What is the value of ##V(r>-R_5)-V(r_{middle})## where ##R_2<r_{middle}<R_3##?
- Relevant Equations
- ##V_A-V_B=-\int_{A}^{B}\vec{E}\cdot d\vec{l}##, ##\vec{E}=\frac{\lambda}{\varepsilon_0}\hat{n}##
What I have done:
(a) If we start at ##R_5## then we have ##\Delta V=-\int_{R_5}^{R_1}\vec{E}\cdot d\vec{l}=-(\int_{R_5}^{R_4}\vec{0}\cdot d\vec{l}+\int_{R_4}^{R_3}\frac{\lambda}{\varepsilon_0}dl+\int_{R_3}^{R_2}\vec{0}\cdot d\vec{l}+\int_{R_2}^{R_1}\frac{\lambda}{\varepsilon_0}dl=-\lambda( \frac{\lambda}{\varepsilon_0}(R_3-R_4) +\frac{\lambda}{\varepsilon_0}(R_1-R_2))=\frac{\lambda}{\varepsilon_0}(R_4-R_3+R_2-R_1).##
(b) ##V(r>R_5)-V(r_{middle})=-\int_{r}^{r_{m}}\vec{E}\cdot d\vec{l}=-(\int_{R_5}^{R_4}\frac{\lambda}{\varepsilon_0}dl+\int_{R_3}^{r_m}\frac{\lambda}{\varepsilon_0}dl)=-\left( \frac{\lambda}{\varepsilon_0}(R_4-R_5)+\frac{\lambda}{\varepsilon_0}(r_m-R_3)\right)=\frac{\lambda}{\varepsilon_0}\left(R_5-R_4+R_3-r_{middle}\right)##.
Is this correct? I would be grateful for some feedback regarding my solution and also for advice about how to tackle these kind of problems with nested conducting shells. Thanks.
(a) If we start at ##R_5## then we have ##\Delta V=-\int_{R_5}^{R_1}\vec{E}\cdot d\vec{l}=-(\int_{R_5}^{R_4}\vec{0}\cdot d\vec{l}+\int_{R_4}^{R_3}\frac{\lambda}{\varepsilon_0}dl+\int_{R_3}^{R_2}\vec{0}\cdot d\vec{l}+\int_{R_2}^{R_1}\frac{\lambda}{\varepsilon_0}dl=-\lambda( \frac{\lambda}{\varepsilon_0}(R_3-R_4) +\frac{\lambda}{\varepsilon_0}(R_1-R_2))=\frac{\lambda}{\varepsilon_0}(R_4-R_3+R_2-R_1).##
(b) ##V(r>R_5)-V(r_{middle})=-\int_{r}^{r_{m}}\vec{E}\cdot d\vec{l}=-(\int_{R_5}^{R_4}\frac{\lambda}{\varepsilon_0}dl+\int_{R_3}^{r_m}\frac{\lambda}{\varepsilon_0}dl)=-\left( \frac{\lambda}{\varepsilon_0}(R_4-R_5)+\frac{\lambda}{\varepsilon_0}(r_m-R_3)\right)=\frac{\lambda}{\varepsilon_0}\left(R_5-R_4+R_3-r_{middle}\right)##.
Is this correct? I would be grateful for some feedback regarding my solution and also for advice about how to tackle these kind of problems with nested conducting shells. Thanks.