- #1
itler
- 8
- 0
Conductivity of a semiconductor charged with "externally added" electrons
Hi,
how does it influence the conductivity of a semiconducting sphere (I take a sphere as it should make some considerations easier than for a cylindrical wire) if I add external charges to it? Don't know how this could be done, maybe by beta radiation, maybe by mechanical friction. Doing so would increase the electron density in the material and so should increase conductivity?
Some considerations about order of magnitude:
Total charge on the sphere due to intrinsic carriers in SI
---------------------------------------------------------------------------
- Radius = 2.5cm --> Volume ~65cm^3
- electron density in SI ~1e10 / cm^3 --> Total charge on the sphere is about 6.5e11 electrons = 1e-7 Coulomb
Voltage needed to add an amount of charge comparable to intrinsic
----------------------------------------------------------------------------------------
- sphere diameter 5cm --> capacitance of about 2.8e-12F
----> Voltage needed to put 1e-7 Coulomb on a 2.8e-12F capacitor is about 36.000V
So from a voltage point of view it seems realistic to add the same amount of charges onto the sphere as there is due to SI intrinsic carriers?? This should raise the conductifity significantly. I'm almost sure that I forgot something, but what??
BTW in this thought experiment, where would the "added" electrons be placed? In the sphere volume or on it's surface? And if on the surface, why do the intrinsic carriers not settle there as well?
~
"question" 16L, 947C
Hi,
how does it influence the conductivity of a semiconducting sphere (I take a sphere as it should make some considerations easier than for a cylindrical wire) if I add external charges to it? Don't know how this could be done, maybe by beta radiation, maybe by mechanical friction. Doing so would increase the electron density in the material and so should increase conductivity?
Some considerations about order of magnitude:
Total charge on the sphere due to intrinsic carriers in SI
---------------------------------------------------------------------------
- Radius = 2.5cm --> Volume ~65cm^3
- electron density in SI ~1e10 / cm^3 --> Total charge on the sphere is about 6.5e11 electrons = 1e-7 Coulomb
Voltage needed to add an amount of charge comparable to intrinsic
----------------------------------------------------------------------------------------
- sphere diameter 5cm --> capacitance of about 2.8e-12F
----> Voltage needed to put 1e-7 Coulomb on a 2.8e-12F capacitor is about 36.000V
So from a voltage point of view it seems realistic to add the same amount of charges onto the sphere as there is due to SI intrinsic carriers?? This should raise the conductifity significantly. I'm almost sure that I forgot something, but what??
BTW in this thought experiment, where would the "added" electrons be placed? In the sphere volume or on it's surface? And if on the surface, why do the intrinsic carriers not settle there as well?
~
"question" 16L, 947C