- #1
Cyrus
- 3,238
- 17
Hi, I have two questions.
The first is on the charge at the surface of a conductor. Let's say we have a charge distribution at the surface of the conductor, but there is a spot on the conductor that is not at the same potential. The result will be that there is a motion of this charge disribution towards the lowest potential energy possible. But once it gets to that point, it won't stop, because its gained kinetic energy in the process. Therefore, it will over shoot, until it looses all its kinetic energy, and repeats the process over again. Obviously, this does not happen, because eventually all the charge does come to rest. What is the reason behind this? Is the loss due to the charge at the surface colliding with atoms as they move through simple harmonic motion, heating up the condutor until they have given up all of their energy and reached equilibrium at the lowest possible potential energy?
My second question is about the electric field inside a wire. If a wire is hooked up to a battery, then there is a voltage, or a potential difference at the two ends of the wire. I know that the potential difference is a result of an electric field being present. But how come the electric field is always inside the wire, and always points in the same direction everywhere inside the wire.
I don't see why the electric field in a wire would always be perpendicular to the cross sectional area of the wire.
The first is on the charge at the surface of a conductor. Let's say we have a charge distribution at the surface of the conductor, but there is a spot on the conductor that is not at the same potential. The result will be that there is a motion of this charge disribution towards the lowest potential energy possible. But once it gets to that point, it won't stop, because its gained kinetic energy in the process. Therefore, it will over shoot, until it looses all its kinetic energy, and repeats the process over again. Obviously, this does not happen, because eventually all the charge does come to rest. What is the reason behind this? Is the loss due to the charge at the surface colliding with atoms as they move through simple harmonic motion, heating up the condutor until they have given up all of their energy and reached equilibrium at the lowest possible potential energy?
My second question is about the electric field inside a wire. If a wire is hooked up to a battery, then there is a voltage, or a potential difference at the two ends of the wire. I know that the potential difference is a result of an electric field being present. But how come the electric field is always inside the wire, and always points in the same direction everywhere inside the wire.
I don't see why the electric field in a wire would always be perpendicular to the cross sectional area of the wire.