- #1
Dr_Pill
- 41
- 0
Hi,
I'm a bit confused wit the concept Configuration Space.
First, the professor defined generalised coordinates as such:
U got a system of n particles, each particle has 3 coordinates(x,y,z), so u got 3n degrees of freedom.
If the system has k holonomic constraints, u got 3n-k degrees of freedom.
Instead of working with cartesian coordinates, we now define a new set of coordinates q1,q2,..,q3n-k.
These are the generalised coordinates of the system,3n-k in total.
I get this.
Then a little bit further, when explaining Hamilton's Variatonal Principle, he defines a Configuration Space.
"The configuration space of a system is a 3n-k dimensional space with the generalised coordinates on the coordinate-axes."
So far, so good.
On the reference list of this course,Classical Mechanics of Goldstein is listed.
First page of the second chapter of Goldstein:
This n-dimensional space is therefore known as the configuration space...
In classical mechanics from Kibble, I didn't even found such thing as config space.
Also, on the internet I've found another course of Classical Mechanics:
http://www.phys.ttu.edu/~huang24/Teaching/Phys5306/CH2A.pdf"
There they say
Also, there's a little graph with on the horizontal axis q1 and on the vertical axis q2, but there are n dimension, according to their course !
But for the axes only q1 and q2 is used, so why not qn-1 and qn.
But a graph with only two axis, is 2-dimensional right?
It is not ndimensional
See my frustration here?
Please help me.
I'm a bit confused wit the concept Configuration Space.
First, the professor defined generalised coordinates as such:
U got a system of n particles, each particle has 3 coordinates(x,y,z), so u got 3n degrees of freedom.
If the system has k holonomic constraints, u got 3n-k degrees of freedom.
Instead of working with cartesian coordinates, we now define a new set of coordinates q1,q2,..,q3n-k.
These are the generalised coordinates of the system,3n-k in total.
I get this.
Then a little bit further, when explaining Hamilton's Variatonal Principle, he defines a Configuration Space.
"The configuration space of a system is a 3n-k dimensional space with the generalised coordinates on the coordinate-axes."
So far, so good.
On the reference list of this course,Classical Mechanics of Goldstein is listed.
First page of the second chapter of Goldstein:
This n-dimensional space is therefore known as the configuration space...
In classical mechanics from Kibble, I didn't even found such thing as config space.
Also, on the internet I've found another course of Classical Mechanics:
http://www.phys.ttu.edu/~huang24/Teaching/Phys5306/CH2A.pdf"
There they say
Here they say n generalised coordinates in n dimensional space, not like according to my professor 3n-k dimensions with 3n-k generalised coordinates!Meaning of “motion of system between time t1 and t2”:
• A system is characterized by n generalized coordinates
q1,q2,q3,..qn.
• At time t1: q1(t1),q2(t1),..,qn(t1) represent a point in the ndimensional
configuration space.
• As time goes on, the system point moves in configuration
space tracing out a curve, called the
path of motion of the system.
• At time t2: q1(t2),q2(t2),.. ,qn(t2)
represent another point in the ndimensional
configuration space.
Also, there's a little graph with on the horizontal axis q1 and on the vertical axis q2, but there are n dimension, according to their course !
But for the axes only q1 and q2 is used, so why not qn-1 and qn.
But a graph with only two axis, is 2-dimensional right?
It is not ndimensional
See my frustration here?
Please help me.
Last edited by a moderator: