- #1
Malamala
- 313
- 27
Hello! I have a Lagrangian of the form:
$$L = \frac{mv^2}{2}+f(v)v$$
where ##f(v)## is a function of the velocity. I would like to derive the equation of motion in general, without writing down an expression for ##f(v)## yet. I have that ##\frac{\partial L}{\partial x} = 0##. However, what is ##\frac{\partial L}{\partial v}##? Is it ##mv+f(v)## or ##mv+f(v)+\frac{\partial f}{v}v##? Thank you!
$$L = \frac{mv^2}{2}+f(v)v$$
where ##f(v)## is a function of the velocity. I would like to derive the equation of motion in general, without writing down an expression for ##f(v)## yet. I have that ##\frac{\partial L}{\partial x} = 0##. However, what is ##\frac{\partial L}{\partial v}##? Is it ##mv+f(v)## or ##mv+f(v)+\frac{\partial f}{v}v##? Thank you!