- #1
BillKet
- 313
- 29
Hello! Assume we have a 2 level system, with the ground state defined as the zero energy level and the excited state having an energy of ##\omega_0##. If we apply an oscillating electric field (assume dipole approximation and rotating wave approximation) of frequency ##\omega##, we have a time dependent hamiltonian. However, if we go to a frame rotating at the frequency of the laser, the explicit time dependence of the hamiltonian vanishes, and we are left with a time independent perturbation. Assuming the laser is on resonance i.e. ##\omega = \omega_0##, it can be shown that in this rotating frame, the energies of the eigenstates (which in the presence of the electric field are not the 2 levels of the atom anymore, but linear combinations of them) are ##\pm \frac{\Omega}{2}##, where ##\Omega## is the Rabi frequency. I understand it so far. However I am not sure what happens in the lab frame (where we actually care for experimental purposes). What I think happens, is that, if we go from the rotating frame back to the lab (non-rotating) frame, still with the laser on resonance, the energy of the lower eigenstate would be ## - \frac{\Omega}{2}## while the energy of the higher state would become ##\omega_0 + \frac{\Omega}{2}##, as now we add the ##e^{-i\omega_0 t}## term back to the upper state. However, this implies that in the lab frame we have 2 states with fixed (i.e. time independent) energy, which I am not sure it's right, given that the hamiltonian in the lab frame is explicitly time dependent, so I would imagine that its eigenstates would also be time dependent. Can someone help me understand how do we go back from the rotating frame with fixed energy levels to the lab frame? Thank you!