- #1
tmt1
- 234
- 0
Hi,
I have
x =(x^2+y^2)^[1/2]
I differentiate
1= 1/2 (x^2+y^2)[-1/2] (2x+2yy')
So far so good. I try to multiply this out.
1= (2x)/2 (x^2+y^2)[-1/2] + (2yy'/2)(x^2+y^2)[-1/2]
I solve for y'
y'= 1/{(x (x^2+y^2)[-1/2]} / {y(x^2+y^2)[-1/2] }
1/x (x^2+y^2)[1/2] * 1/y (x^2+y^2)[1/2]
The square roots multiply out.
y'=(x^2+y^2)/xy
yet the correct response is
y'=[(x^2+y^2)^1/2 -x] / y
Am I missing something?
Thanks
I have
x =(x^2+y^2)^[1/2]
I differentiate
1= 1/2 (x^2+y^2)[-1/2] (2x+2yy')
So far so good. I try to multiply this out.
1= (2x)/2 (x^2+y^2)[-1/2] + (2yy'/2)(x^2+y^2)[-1/2]
I solve for y'
y'= 1/{(x (x^2+y^2)[-1/2]} / {y(x^2+y^2)[-1/2] }
1/x (x^2+y^2)[1/2] * 1/y (x^2+y^2)[1/2]
The square roots multiply out.
y'=(x^2+y^2)/xy
yet the correct response is
y'=[(x^2+y^2)^1/2 -x] / y
Am I missing something?
Thanks