- #1
waht
- 1,501
- 4
This is probably really simple. In chapter I.4 the jump from (4) -> (5) is sort of eluding
[tex] W(J) = - \iint dx^0 dy^0 \int \frac{dk^0}{2\pi} e^{i k^0(x - y)^0} \int \frac{d^3k}{(2 \pi)^3} \frac{e^{i \vec{k}(\vec{x_1} - \vec{x_2})}} {k^2 - m^2 + i\epsilon} [/tex]
and
[tex] \omega^2 = \vec{k}^2 + m^2 [/tex]
He got
[tex] W(J) = \int dx^0 \int \frac{d^3k}{(2\pi)^3} \frac{e^{i \vec{k} (\vec{x_1} - \vec{x_2})}}{\vec{k}^2 + m^2} [/tex]
the way I see it - the middle term is the delta function
[tex] W(J) = - \iint dx^0 dy^0 \delta(x^0 - y^0) \int \frac{d^3k}{(2 \pi)^3} \frac{e^{i \vec{k}(\vec{x_1} - \vec{x_2})}} {k^2 - m^2 + i\epsilon} [/tex]
but how does it disappear, and how does
[tex]k^2 - m^2 + i\epsilon [/tex] turn into
[tex]\vec{k}^2 + m^2 [/tex]
[tex] k^0 [/tex] would be the [tex]\omega [/tex]
but somehow this doesn't add up.
so just wondering if anyone could give a pointer on how to solve this
[tex] W(J) = - \iint dx^0 dy^0 \int \frac{dk^0}{2\pi} e^{i k^0(x - y)^0} \int \frac{d^3k}{(2 \pi)^3} \frac{e^{i \vec{k}(\vec{x_1} - \vec{x_2})}} {k^2 - m^2 + i\epsilon} [/tex]
and
[tex] \omega^2 = \vec{k}^2 + m^2 [/tex]
He got
[tex] W(J) = \int dx^0 \int \frac{d^3k}{(2\pi)^3} \frac{e^{i \vec{k} (\vec{x_1} - \vec{x_2})}}{\vec{k}^2 + m^2} [/tex]
the way I see it - the middle term is the delta function
[tex] W(J) = - \iint dx^0 dy^0 \delta(x^0 - y^0) \int \frac{d^3k}{(2 \pi)^3} \frac{e^{i \vec{k}(\vec{x_1} - \vec{x_2})}} {k^2 - m^2 + i\epsilon} [/tex]
but how does it disappear, and how does
[tex]k^2 - m^2 + i\epsilon [/tex] turn into
[tex]\vec{k}^2 + m^2 [/tex]
[tex] k^0 [/tex] would be the [tex]\omega [/tex]
but somehow this doesn't add up.
so just wondering if anyone could give a pointer on how to solve this