- #1
Hamiltonian
- 296
- 193
##\bar{\mathcal{O}}## is moving with a velocity ##v## relative to ##\mathcal{O}## along ##x^{1}##
The Lorentz transformations between a Frame ##\mathcal{O}## and ##\bar{\mathcal{O}}## is given by:
$$\Delta x^{\bar{0}} = \gamma\left(\Delta x^0 - v\Delta x^1\right)$$
$$\Delta x^{\bar{1}} = \gamma\left(\Delta x^1 - v\Delta x^0 \right)$$
$$\Delta x^{\bar{2}} = \Delta x^{2}$$
$$\Delta x^{\bar{3}} = \Delta x^{3}$$
where ##\gamma = 1/\sqrt{1- v^2}##
and ##\mu \in [0, 1, 2, 3]##
In MIT 8.962, the prof. writes the Lorentz transformations as:
$$\Delta x^{\bar{\mu}} = \sum_{\nu = 0}^{3} \wedge_{\nu}^{\bar{\mu}} \Delta x^{\mu}$$
what does ##\wedge_{\nu}^{\bar{\mu}}## represent and how is the above equation equivalent to the Lorentz transformations?
The Lorentz transformations between a Frame ##\mathcal{O}## and ##\bar{\mathcal{O}}## is given by:
$$\Delta x^{\bar{0}} = \gamma\left(\Delta x^0 - v\Delta x^1\right)$$
$$\Delta x^{\bar{1}} = \gamma\left(\Delta x^1 - v\Delta x^0 \right)$$
$$\Delta x^{\bar{2}} = \Delta x^{2}$$
$$\Delta x^{\bar{3}} = \Delta x^{3}$$
where ##\gamma = 1/\sqrt{1- v^2}##
and ##\mu \in [0, 1, 2, 3]##
In MIT 8.962, the prof. writes the Lorentz transformations as:
$$\Delta x^{\bar{\mu}} = \sum_{\nu = 0}^{3} \wedge_{\nu}^{\bar{\mu}} \Delta x^{\mu}$$
what does ##\wedge_{\nu}^{\bar{\mu}}## represent and how is the above equation equivalent to the Lorentz transformations?
Last edited: