- #1
mdnazmulh
- 51
- 0
I’ve got a confusion. We know a 1x3 row matrix is a 3-vector i.e.
x= [ a b c]
Matrix x can be written in vector notation like x= a i + b j + c k
where i, j, k are unit vectors along x,y & z axes.
For dot product of
x.x = a2 + b2 + c2 when x= a i + b j + c k
But according to the matrix multiplication rule, multiplication of two matrices is possible only when column of 1st matrix = row of the 2nd matrix.
So x.x = [ a b c] [ a b c] is not possible
My questions are :
(1) Both x= [ a b c] and x= a i + b j + c k are same vector.
Then why this discrepancy happens?
(2) Does really x.x exist when x = [ a b c]? Can we approach in any other way to define x.x when x = [ a b c] ?
I’m novice at linear algebra. So it would be helpful for me if you can explain elaborately. I’m really at a loss about that confusion.
x= [ a b c]
Matrix x can be written in vector notation like x= a i + b j + c k
where i, j, k are unit vectors along x,y & z axes.
For dot product of
x.x = a2 + b2 + c2 when x= a i + b j + c k
But according to the matrix multiplication rule, multiplication of two matrices is possible only when column of 1st matrix = row of the 2nd matrix.
So x.x = [ a b c] [ a b c] is not possible
My questions are :
(1) Both x= [ a b c] and x= a i + b j + c k are same vector.
Then why this discrepancy happens?
(2) Does really x.x exist when x = [ a b c]? Can we approach in any other way to define x.x when x = [ a b c] ?
I’m novice at linear algebra. So it would be helpful for me if you can explain elaborately. I’m really at a loss about that confusion.