- #1
Tom Westbrook
- 5
- 1
I have two balls spinning with v1, omega1 and v2, omega2. They collide elastically with no tangential slip, resulting in new values for v1, omega1 and v2, omega2. I have the two components v1 & v2 figured out in the plane of contact, where angular momentum does not come into play. But I am still struggling with the tangential component that has effect on the final omegas. I have 4 unknowns, and can only come up with three equations. 1) linear momentum, 2) angular momentum, and 3) energy conservation.
I have decided to break the problem into three stages, initial, intermediate and final. The first stage would allow the calculation of an inelastic problem where v1tangential and omega of the intermediate system could be calculated, being they are the same for both balls. Then, the energy lost could be theoretical added back into each final system as energy stored in a clock spring to calculate the final omega1, omega2, and y1tangential, y2tangential. I'm still struggling with this last part. Anyone have any ideas/comments?
Thank you
I have decided to break the problem into three stages, initial, intermediate and final. The first stage would allow the calculation of an inelastic problem where v1tangential and omega of the intermediate system could be calculated, being they are the same for both balls. Then, the energy lost could be theoretical added back into each final system as energy stored in a clock spring to calculate the final omega1, omega2, and y1tangential, y2tangential. I'm still struggling with this last part. Anyone have any ideas/comments?
Thank you