- #1
SiRiVeon
- 4
- 0
- Homework Statement
- What is the minimum height of the triangle for which if the black ball falls through the inclined
plane, it will be able to make a full cycle around the circle at the bottom of the inclined plane of
radius R?
- Relevant Equations
- mgh = (1/2)mv² + (1/2)Iω² , = (2/5)mr² , v = ωr , Centripetal force = mv²/r
Hello, this question may seem weird but I really need help on this.
To bring the formula for the height h of the triangle above, I have to create a relation between potential and kinetic energies of the black ball with mass m (I can't find any other methods than this).
For a sphere falling through an inclined plane, the equation to satisfy it's conservation of energy is mgh = (1/2)mv² + (1/2)Iω² where v is the linear velocity of the ball, g is the acceleration due to gravity, ω is the rotational velocity of the ball and I is the moment of inertia of the ball which can be expressed by I = kmr² where k = 2/5 for sphere of radius r. By putting ω = v/r and expression of I into the first equation, I get mgh = (1/2)mv² + (1/5)mv² .
But in the given question, it says that the ball makes a full cycle around the circle of radius R at the bottom of the inclined plane. So what should be the conservation of energy in this case? If the centripetal force to move around that circle is mv²/R then will it be mgh = (1/2)mv² + (1/5)mv² + mv²/R for the whole scenario or will it be mv²/R = (1/2)mv² + (1/5)mv² or none of this?
To bring the formula for the height h of the triangle above, I have to create a relation between potential and kinetic energies of the black ball with mass m (I can't find any other methods than this).
For a sphere falling through an inclined plane, the equation to satisfy it's conservation of energy is mgh = (1/2)mv² + (1/2)Iω² where v is the linear velocity of the ball, g is the acceleration due to gravity, ω is the rotational velocity of the ball and I is the moment of inertia of the ball which can be expressed by I = kmr² where k = 2/5 for sphere of radius r. By putting ω = v/r and expression of I into the first equation, I get mgh = (1/2)mv² + (1/5)mv² .
But in the given question, it says that the ball makes a full cycle around the circle of radius R at the bottom of the inclined plane. So what should be the conservation of energy in this case? If the centripetal force to move around that circle is mv²/R then will it be mgh = (1/2)mv² + (1/5)mv² + mv²/R for the whole scenario or will it be mv²/R = (1/2)mv² + (1/5)mv² or none of this?