Conservation of momentum and jumping girl

In summary, a force of 12 N is applied to a ball which has coordinates of (2,2). The ball's center of mass experiences an acceleration of 4 m/s^2.
  • #1
nns91
301
1

Homework Statement


1. A force F= 12 N i is applied to a 3kg ball which has coordinate of (2,2). What is the acceleration of the center of mass.

2. A girl jumps from a boat to a dock. Why does she have to jump with more energy than she would need if she were jumping the same distance from one dock to another ?

3. A shell of mass m and speed v explodes into two identical fragments. If the shell ws moving horizontally with respect to the earth, and one of the fragments is subsequently moving vertically with the speed v, find the velocity v' of the other fragment.

4/ In a circus act, Marcello (m= 70kg) is shot from a cannon with a muzzle velocity of 24 m/s at an angle of 30 degree above horizontal. His partner, Tina (m=50kg), stands on an elevated platform located at the top of his trajectory. He grabs her as he flies by and the two fly off together. They land in a net at the same elevation as the cannon a horizontal distance x away. Find x

5. Liz, Jay, and Tara discover tha sinister chemicals are leaking at a steady rate from a hole in the bottom of a realiway car. To collect evidence of a potential environmental mishap, they videotape the car as it rolls without friction at initial speed of v0. Tara claims that the car's speed is increasing, because it is losing mas as it drains. The increase in speed will help to prove that the leak is occurring. Liz says no, that with a loss of mass, the car's speed will be decreasing. Jay says the speed will remain the same. (a) who is right ? (b) what forces are exerted on the system of the car plus chemical cargo ??

Homework Equations



F=ma
Mvcm=m1v1 + m2v2

The Attempt at a Solution



1. I use F= M a(i) so a = F/m = 12N/3kg = 4 m/s^2. However, I got marked wrong. Where did I do wrong ??

2. I explained that because when she jumps from the boat, the boat will have a velocity of opposite direction. However, when she jumps from dock to dock, the dock does not move. Thus, she needs more energy to jump from the boat.

p1=m1v1 + m2v2 > p2=m1v1 m1v1 are of the girl and m2v2 are of the boat.

Why my explanation is wrong ??

3. Mvcm= (m/2)v1 + (m/2)v2

In x component: Mvcm,x = (m/2)*0 + (m/2)*v2

Thus, v= (1/2)v2 so v2= 2v. What did I do wrong again ?

4. I use R=(v^2* sin2[tex]\theta[/tex])/g to find x and get (24^2* sin60)/9.81 = 50.8m

How can I fix this mistake ??

5. I answered that Tara was right because as Mvcm= m1v1 +m2v2 so

vcm= (m1v1+m2v2) / (m1+m2) and m2 (mass of oil) decreases v will increases. However, I am wrong again.

I think Liz was right since you don't have that much of fuel and car's speed will approach zero. I don't know how to explain in a right way. AM I right ?

(b) I got normal force and gravitational force. Are those enough ??
 
Physics news on Phys.org
  • #2
First of all, what is the direction of the applied force in 1. ?
 
  • #3
1. It's in x direction.
 
  • #4
In number one, the i means x direction in unit vector notation.
 
  • #5
I have trying to solve number 4 but still got wrong answer. Anyone have any ideas ?
 

FAQ: Conservation of momentum and jumping girl

What is the conservation of momentum?

The conservation of momentum is a fundamental principle in physics that states that the total momentum of a closed system remains constant in the absence of external forces. This means that the total amount of momentum before an event must be equal to the total amount of momentum after the event.

How does the conservation of momentum apply to a jumping girl?

When a girl jumps, she exerts a downward force on the ground, causing the ground to push back up with an equal and opposite force. This reaction force propels the girl upwards, and as she jumps, she gains momentum. This momentum is conserved, meaning that when she lands, her momentum will be equal and opposite to her initial momentum, resulting in a smooth and balanced landing.

Why is the conservation of momentum important in sports like gymnastics and figure skating?

In sports like gymnastics and figure skating, athletes often perform complex maneuvers that involve jumping, spinning, and changing direction. The conservation of momentum is crucial in ensuring that these movements are executed smoothly and without loss of balance. By understanding and applying the principle of conservation of momentum, athletes can achieve more efficient and controlled movements.

What factors can affect the conservation of momentum in a jumping girl?

The conservation of momentum can be affected by several factors, such as the mass and velocity of the girl, the surface she is jumping on, and the forces acting upon her during the jump. Other external factors, such as air resistance and friction, can also play a role in the conservation of momentum.

How does the conservation of momentum relate to Newton's third law of motion?

Newton's third law of motion states that for every action, there is an equal and opposite reaction. This law is closely related to the conservation of momentum, as the reaction force exerted on the ground by the jumping girl is equal and opposite to the force she exerts on the ground. This balance of forces ensures that momentum is conserved throughout the jump.

Back
Top