- #36
bob012345
Gold Member
- 2,133
- 941
In any collision having multiple particles each will have a different ##\gamma## factor if they have different velocities and any transformation to another reference frame will involve yet another ##\gamma## factor. It seems to me the simplest answer to the OP question is that it is always and only the total relativistic momentum and energy that are conserved but in the low velocity limit all the ##\gamma## factors approach 1. It would be more instructive to do a relativistic momentum conservation problem properly and then see how it looks Newtonian in the limit as ##\large \frac{v}{c}## is very small.
Also, I disagree that the concept of relativistic mass is a bad idea. It seems very natural and is the reason for the difference in Newtonian momentum and relativistic momentum. In both cases we can write ##\vec p = m \vec v## but understand in the Newtonian case ##m## is the intrinsic rest mass ##m_o## and in the relativistic case it is ##m = \gamma m_o##
Also, I disagree that the concept of relativistic mass is a bad idea. It seems very natural and is the reason for the difference in Newtonian momentum and relativistic momentum. In both cases we can write ##\vec p = m \vec v## but understand in the Newtonian case ##m## is the intrinsic rest mass ##m_o## and in the relativistic case it is ##m = \gamma m_o##
Last edited: