Conservation of String Exercise

  • #1
mancity
21
2
Homework Statement
Explain why the acceleration of the left mass equals negative the average of the accelerations of the right two masses.
Relevant Equations
Conservation of string
I'm not quite sure how to apply conservation of string to this problem, so guidance would be appreciated. Normally as long as there isn't a "sub-pulley" I can do the problem fairly easily but this one tricks me up. Thanks
 

Attachments

  • 2.png
    2.png
    2.6 KB · Views: 11
Physics news on Phys.org
  • #2
mancity said:
Normally as long as there isn't a "sub-pulley" I can do the problem fairly easily but this one tricks me up. Thanks
The sub-pulley is symmetric, correct? That is, there is no difference between its right and left hand sides? They are mirror images of each other?
 
  • #3
jbriggs444 said:
The sub-pulley is symmetric, correct? That is, there is no difference between its right and left hand sides? They are mirror images of each other?
I take the masses as unknown.

mancity said:
I'm not quite sure how to apply conservation of string to this problem,
Write equations relating string (section) lengths to heights of masses, throwing in constants as necessary. Differentiate twice.
 
  • #4
mancity said:
Homework Statement: Explain why the acceleration of the left mass equals negative the average of the accelerations of the right two masses.
Relevant Equations: Conservation of string

I'm not quite sure how to apply conservation of string to this problem, so guidance would be appreciated. Normally as long as there isn't a "sub-pulley" I can do the problem fairly easily but this one tricks me up. Thanks
'Conservation of string' is an unusual way to state that the length of the string is constant. So when you set up a set of equations for your exercise, one of them is a relationship between
##y_2##, the vertical position of the middle mass,
##y_3##, idem rightmost mass
##y_5##, the vertical position of the center of the pulley on the right:
##y_5-y_2+y_5-y_3=C##

Differentiation wrt time gives an equation for the vertical velocities; a second differentiation yields another for the accelerations.

##\ ##
 
  • #5
mancity said:
Homework Statement: Explain why the acceleration of the left mass equals negative the average of the accelerations of the right two masses.
Relevant Equations: Conservation of string

I'm not quite sure how to apply conservation of string to this problem, so guidance would be appreciated. Normally as long as there isn't a "sub-pulley" I can do the problem fairly easily but this one tricks me up. Thanks
Relative to the bottom pulley, the average acceleration of the bottom two masses is zero. The acceleration of the upper mass is minus the acceleration of the bottom pulley.
 
  • Like
Likes jbriggs444
  • #6
Chestermiller said:
Relative to the bottom pulley, the average acceleration of the bottom two masses is zero. The acceleration of the upper mass is minus the acceleration of the bottom pulley.
My impression is that the OP has been instructed to use conservation of string length to obtain the result. That suggests to me applying your framework to positions and then differentiating.
 
  • Like
Likes Chestermiller
Back
Top