- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{311.1.1.26}$
Construct 3 augmented matrices for linear systems whose solution set is $x_1=3, \quad x_2=-2, \quad x_3=-1$
ok the only thing I could think of is just rearrange the rows of an RREF matrix. albeit losing the triangle format
hopefully no typos
$\left[\begin{array}{rrr|rr}
1& 0& 0& 3\\ 0& 1& 0& -2\\ 0& 0& 1& -1\\
\end{array}\right]
\quad
\left[\begin{array}{rrr|rr}
0& 1& 0& -2\\ 1& 0& 0& 3\\ 0& 0& 1& -1\\
\end{array}\right]
\quad
\left[\begin{array}{rrr|rr}
0& 1& 0& -2\\0& 0& 1& -1\\ 1& 0& 0& 3\\
\end{array}\right]
$
Construct 3 augmented matrices for linear systems whose solution set is $x_1=3, \quad x_2=-2, \quad x_3=-1$
ok the only thing I could think of is just rearrange the rows of an RREF matrix. albeit losing the triangle format
hopefully no typos
$\left[\begin{array}{rrr|rr}
1& 0& 0& 3\\ 0& 1& 0& -2\\ 0& 0& 1& -1\\
\end{array}\right]
\quad
\left[\begin{array}{rrr|rr}
0& 1& 0& -2\\ 1& 0& 0& 3\\ 0& 0& 1& -1\\
\end{array}\right]
\quad
\left[\begin{array}{rrr|rr}
0& 1& 0& -2\\0& 0& 1& -1\\ 1& 0& 0& 3\\
\end{array}\right]
$