MHB Construct a pair of simultaneous equations

AI Thread Summary
The discussion revolves around constructing simultaneous equations to determine the number of girls and boys in a hostel needing new uniforms. Each girl requires 1 meter of white material for a blouse and 1.5 meters of blue material for a skirt, while each boy needs 1.5 meters of blue material for a shirt and 2 meters for trousers. The total available white material is 72 meters, and the total blue material is 100 meters. The proposed equations are x + 1.5y = 72 for white material and 1.5x + 2y = 100 for blue material. The participants note the importance of accurately accounting for the materials to avoid shortages.
mathlearn
Messages
331
Reaction score
0
The students in a hostel are to get new uniforms. Each girl is to receive a blouse and a skirt , each boy is to receive a shirt and a pair of trousers.1 meter of white material is required to sew a blouse and $1\frac{1}{2}$ meters of blue material is required to sew a shirt . Moreover $1\frac{1}{2}$ meters of blue material is required to sew a skirt and 2 meters of blue material is required to sew a pair of trousers. The total amount of white material is 72 meters and the total amount of blue material required is 100 meters.

i.Taking the number of girls as $x$ and the number of boys as $y$ , construct a pair of simultaneous equations in x and y

I need help in constructing the pair of equations. (Sun)
 
Mathematics news on Phys.org
mathlearn said:
The students in a hostel are to get new uniforms. Each girl is to receive a blouse and a skirt , each boy is to receive a shirt and a pair of trousers.1 meter of white material is required to sew a blouse and $1\frac{1}{2}$ meters of blue material is required to sew a shirt . Moreover $1\frac{1}{2}$ meters of blue material is required to sew a skirt and 2 meters of blue material is required to sew a pair of trousers. The total amount of white material is 72 meters and the total amount of blue material required is 100 meters.

i.Taking the number of girls as $x$ and the number of boys as $y$ , construct a pair of simultaneous equations in x and y

I need help in constructing the pair of equations. (Sun)

Hey mathlearn,

Did you already try something? Or can you explain where you're stuck?

With $x$ girls, how many blouses and skirts will we need?
How much of the materials will that require? (Wondering)
 
I like Serena said:
Hey mathlearn,

Did you already try something? Or can you explain where you're stuck?

With $x$ girls, how many blouses and skirts will we need?
How much of the materials will that require? (Wondering)

Hey I like Serena (Wave),

I was totally helpless here & that Implies that I am stuck in the beginning. :confused:

With $x$ girls 1m*$x$ for blouse & $1\frac{1}{2}$ meters for skirt

Taking boys as $y 1\frac{1}{2}$ for shirt and 2 of the blue material for trousers.

I will attempt to construct a pair of simultaneous equations.

$1x+1\frac{1}{2}y=72m\left(white material\right)$

$1\frac{1}{2}x+2y=100m\left(blue material\right)$

You have forgot to wink (';)') here (Giggle)

I like Serena said:
Hey mathlearn,

Did you already try something?
 
mathlearn said:
Hey I like Serena (Wave),

I was totally helpless here & that Implies that I am stuck in the beginning. :confused:

With $x$ girls 1m*$x$ for blouse & $1\frac{1}{2}$ meters for skirt

Taking boys as $y 1\frac{1}{2}$ for shirt and 2 of the blue material for trousers.

I will attempt to construct a pair of simultaneous equations.

$1x+1\frac{1}{2}y=72m\left(white material\right)$

$1\frac{1}{2}x+2y=100m\left(blue material\right)$

You have forgot to wink (';)') here (Giggle)

There you go! ;)
Except that boys are fully clad in blue, so it should be:

$1x=72\text{ m (white material)}$

$1\frac{1}{2}x++1\frac{1}{2}y + 2y=100\text{ m (blue material)}$

Looks like we might run short on blue material! :eek:
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Back
Top