- #1
eleventhxhour
- 74
- 0
Algorithms like the transformation algorithm: $(x, y)$ --> $(\frac{x}{k} + p, ay + d)$ are not generally used in mathematics. Instead, we use matrices.
Multiplying matrixes: you multiply a row of the first matrix by a column of the second. Use the following example:
$ \begin{bmatrix}x & y \end{bmatrix}\begin{bmatrix}a & b \\ c & d \end{bmatrix} = \begin{bmatrix}ax + cy & bx + dy \end{bmatrix} $
Use this information to construct a matrix version of the transformation algorithm for the transformation $y=af[k(x−p)]+d$
Multiplying matrixes: you multiply a row of the first matrix by a column of the second. Use the following example:
$ \begin{bmatrix}x & y \end{bmatrix}\begin{bmatrix}a & b \\ c & d \end{bmatrix} = \begin{bmatrix}ax + cy & bx + dy \end{bmatrix} $
Use this information to construct a matrix version of the transformation algorithm for the transformation $y=af[k(x−p)]+d$
Last edited by a moderator: