- #1
kalish1
- 99
- 0
**Background:** I have been working on this problem for my research for months now, and I am in dire need of help. That is why I have come here to seek help.
I have a system of nine ODEs that describe the dynamics of HIV and Tuberculosis co-infection in a population. The disease-free equilibrium is $E_0=(\frac{\Lambda}{\mu},0,0,0,0,0,0,0).$ I also have the expression for the reproductive number, $\Re_0$.
**Problem:** I need to find a Lyapunov function that will establish negative-definiteness if and only if $\Re_0 \leq 1.$
Here is the setup:
\begin{array}
$
\frac{dA}{dt}=\Lambda-\mu A-\beta(C+D+E+F)\frac{A}{N}-\tau(B+D)\frac{A}{N} \\
\frac{dB}{dt}=\tau(B+D)\frac{A}{N}-\beta(C+D+E+F)\frac{B}{N}-(\mu+\mu_T)B, \\
\frac{dC}{dt}=\beta(C+D+E+F)\frac{A}{N}-\tau(B+D)\frac{C}{N}-(\mu+\mu_A)C, \\
\frac{dD}{dt}=\beta(C+D+E+F)\frac{B}{N}+\tau(B+D)\frac{C}{N}-(\mu+\mu_T+\psi\mu_A+\lambda_T)D, \\
\frac{dE}{dt}=\lambda_TD-(\mu+\mu_A+\rho_1+\eta_1)E, \\
\frac{dF}{dt}=\rho_1E-(\mu+\mu_A+\rho_2+\eta_2)F, \\
\frac{dG}{dt}=\eta_1E-(\mu+\rho_1+\gamma)G, \\
\frac{dH}{dt}=\eta_2H+\rho_1G-(\mu+\rho_2+\frac{\gamma\rho_1}{\rho_1+\rho_2})H, \\
\frac{dN}{dt}= \Lambda-\mu A - (\mu+\mu_T)B - (\mu+\mu_A)C -(\mu+\mu_T+\psi\mu_A)D - (\mu+\mu_A)E - (\mu+\mu_A+\rho_2)F -(\mu+\gamma)G -(\mu+\rho_2+\dfrac{\gamma\rho_1}{\rho_1+\rho_2})H
%$
\end{array}
where $$\Re_0 = \max\left\{\frac{\beta}{\mu+\mu_H},\frac{\tau}{\mu+\mu_T}\right\}.$$
I have tried many classes of functions: quadratic, composite quadratic, logarithmic, etc. to no avail. My advisor tells me that a logarithmic Lyapunov function should work. Something like $$L(t)=\left(A-A^{*}-\ln\frac{A}{A^{*}}\right)+(B+C+D+E+F+G+H), $$ where $A^{*}=\frac{\Lambda}{\mu}.$
Please let me know what looks feasible. Thank you.
I have crossposted this question on MSE: http://math.stackexchange.com/questions/986704/constructing-lyapunov-function-for-system-of-odes
I have a system of nine ODEs that describe the dynamics of HIV and Tuberculosis co-infection in a population. The disease-free equilibrium is $E_0=(\frac{\Lambda}{\mu},0,0,0,0,0,0,0).$ I also have the expression for the reproductive number, $\Re_0$.
**Problem:** I need to find a Lyapunov function that will establish negative-definiteness if and only if $\Re_0 \leq 1.$
Here is the setup:
\begin{array}
$
\frac{dA}{dt}=\Lambda-\mu A-\beta(C+D+E+F)\frac{A}{N}-\tau(B+D)\frac{A}{N} \\
\frac{dB}{dt}=\tau(B+D)\frac{A}{N}-\beta(C+D+E+F)\frac{B}{N}-(\mu+\mu_T)B, \\
\frac{dC}{dt}=\beta(C+D+E+F)\frac{A}{N}-\tau(B+D)\frac{C}{N}-(\mu+\mu_A)C, \\
\frac{dD}{dt}=\beta(C+D+E+F)\frac{B}{N}+\tau(B+D)\frac{C}{N}-(\mu+\mu_T+\psi\mu_A+\lambda_T)D, \\
\frac{dE}{dt}=\lambda_TD-(\mu+\mu_A+\rho_1+\eta_1)E, \\
\frac{dF}{dt}=\rho_1E-(\mu+\mu_A+\rho_2+\eta_2)F, \\
\frac{dG}{dt}=\eta_1E-(\mu+\rho_1+\gamma)G, \\
\frac{dH}{dt}=\eta_2H+\rho_1G-(\mu+\rho_2+\frac{\gamma\rho_1}{\rho_1+\rho_2})H, \\
\frac{dN}{dt}= \Lambda-\mu A - (\mu+\mu_T)B - (\mu+\mu_A)C -(\mu+\mu_T+\psi\mu_A)D - (\mu+\mu_A)E - (\mu+\mu_A+\rho_2)F -(\mu+\gamma)G -(\mu+\rho_2+\dfrac{\gamma\rho_1}{\rho_1+\rho_2})H
%$
\end{array}
where $$\Re_0 = \max\left\{\frac{\beta}{\mu+\mu_H},\frac{\tau}{\mu+\mu_T}\right\}.$$
I have tried many classes of functions: quadratic, composite quadratic, logarithmic, etc. to no avail. My advisor tells me that a logarithmic Lyapunov function should work. Something like $$L(t)=\left(A-A^{*}-\ln\frac{A}{A^{*}}\right)+(B+C+D+E+F+G+H), $$ where $A^{*}=\frac{\Lambda}{\mu}.$
Please let me know what looks feasible. Thank you.
I have crossposted this question on MSE: http://math.stackexchange.com/questions/986704/constructing-lyapunov-function-for-system-of-odes