- #1
Ant farm
- 19
- 0
Hey there,
firstly I hope that this is the right place to discuss such things. if not, could you direct me somewhere else?
Ok, I have to construct the Galois Group of f= (x^2-2x-1)^3 (x^2+x+1)^2 (x+1)^4 and then represent it as a permutation group of the roots.
first I constructed the splitting field extension S:Q (where S= summation symbol and Q = field of Rational numbers)
The splitting field i Came up with was Q(sqrt (2), sqrt (-3)):Q, and the degree of this splitting field is 4...am I correct here? is this the splitting field?
The Galois group represented as a permutation group I ended up getting was
{ e (the identity), (sqrt(-3),-sqrt(-3)),(sqrt(2),-sqrt(2)),(sqrt(2),-sqrt(2))(sqrt(-3),-sqrt(-3))}
isomorphic to the Klein4 group...
am i doing this right?? it just seems abit simple a result for an initial function that wasn't that simple !
firstly I hope that this is the right place to discuss such things. if not, could you direct me somewhere else?
Ok, I have to construct the Galois Group of f= (x^2-2x-1)^3 (x^2+x+1)^2 (x+1)^4 and then represent it as a permutation group of the roots.
first I constructed the splitting field extension S:Q (where S= summation symbol and Q = field of Rational numbers)
The splitting field i Came up with was Q(sqrt (2), sqrt (-3)):Q, and the degree of this splitting field is 4...am I correct here? is this the splitting field?
The Galois group represented as a permutation group I ended up getting was
{ e (the identity), (sqrt(-3),-sqrt(-3)),(sqrt(2),-sqrt(2)),(sqrt(2),-sqrt(2))(sqrt(-3),-sqrt(-3))}
isomorphic to the Klein4 group...
am i doing this right?? it just seems abit simple a result for an initial function that wasn't that simple !