- #1
Rubiss
- 21
- 0
Homework Statement
Derive the continuity equation for a charged particle in an electromagnetic field
Homework Equations
The time-dependent Schrodinger equation and its complex conjugate are
[tex]i\hbar\frac{\partial \psi}{\partial t}=\frac{1}{2m}(-i\hbar \vec{\nabla} - \frac{e}{c} \vec{A})^{2}\psi+e\phi\psi [/tex]
[tex]i\hbar\frac{\partial \psi^{*}}{\partial t}=\frac{1}{2m}(+i\hbar \vec{\nabla} - \frac{e}{c} \vec{A})^{2}\psi^{*}+e\phi\psi^{*} [/tex]
The Attempt at a Solution
I proceed in much the same way I would when deriving the continuity equation without a magnetic field. I multiply the top equation by psi-star, the bottom by psi and subtract the bottom equation from the top equation to obtain
[tex] \frac{\partial \rho}{\partial t} = \frac{-\hbar}{2mi}(\psi^{*}\vec{\nabla}^{2}\psi - \psi \vec{\nabla}^{2} \psi^{*})+\frac{e}{2mc}(2|\psi|^{2}\vec{\nabla} \cdot \vec{A}+\psi^{*}\vec{A} \cdot \vec{\nabla}\psi + \psi \vec{A} \cdot \vec{\nabla}\psi^{*})[/tex]
Now I pull a divergence out of the first quantity in the parentheses on the right, and that becomes the the probability current when there is no magnetic field. Then I use the fact that the divergence of A is zero. This leaves me with
[tex] \frac{\partial \rho}{\partial t} = -\vec{\nabla} \cdot \vec{j} + \frac{e}{2mc} (\psi^{*}\vec{A} \cdot \vec{\nabla}\psi + \psi \vec{A} \cdot \vec{\nabla}\psi^{*})[/tex]
Now I pull the A out of parentheses:
[tex] \frac{\partial \rho}{\partial t} = -\vec{\nabla} \cdot \vec{j} + \frac{e}{2mc} \vec{A} \cdot (\psi^{*}\vec{\nabla}\psi + \psi\vec{\nabla}\psi^{*})[/tex]
This becomes
[tex] \frac{\partial \rho}{\partial t} = -\vec{\nabla} \cdot \vec{j} + \frac{e}{2mc} \vec{A} \cdot (\vec{\nabla}|\psi|^{2})[/tex]
and I can pull the gradient out because del dot A is zero:
[tex] \frac{\partial \rho}{\partial t} = -\vec{\nabla} \cdot \vec{j} + \frac{e}{2mc} \vec{\nabla} \cdot (\vec{A}|\psi|^{2})[/tex]
Now pull the divergence out of both terms:
[tex] \frac{\partial \rho}{\partial t} = -\vec{\nabla} \cdot (\vec{j} + \frac{e}{2mc}\vec{A}|\psi|^{2})[/tex]
Now I am very close to the correct answer (I know because the result is on the page "probability current" on Wikipedia). My only problem is that there should NOT be a 2 in the denominator. I have spent a long time trying to find out why this 2 is there. Any help would be appreciated.