- #1
Felafel
- 171
- 0
Homework Statement
Prove
## f(x,y,z)=xyw## is continuos using the Lipschitz condition
Homework Equations
the Lipschitz condition states:
##|f(x,y,z)-f(x_0,y_0,z_0)| \leq C ||(x,y,z)-(x_0,y_0,z_0)||##
with ##0 \leq C##
The Attempt at a Solution
##|xyz-x_0y_0z_0|=|xyz-x_0y_0z_0+x_0yz-x_0yz|\leq|(x-x_0)(yz)|+|x_0(yz-y_0z_0)|##
##\leq|(x-x_0)(yz)|+|x_0(yz-y_0z_0+yz_0-yz_0)| \leq |yz(x-x_0)|+|x_0[y(z-z_0)+z_0(y-y_0)]|##
## \leq |yz(x-x_0)|+|x_0y(z-z_0)|+|x_0z_0(y-y_0)|##
and by choosing ##C=max\{|yz|,|x_0y|,|x_0z_0|\}## I have my inequality.
I'm not sure I can do this, though. Are all the passages logic?
Thank you in advance :)