- #1
archaic
- 688
- 214
Hey, please tell me if the following is correct.
We have a continuous, increasing and strictly monotonic function on ##[a, b]##, and ##x_0\in[a,b]##. Let ##g(y)## be its inverse, and ##f(x_0)=y_0##.
I want to show that ##|y-y_0|<\delta\implies|g(y)-g(y_0)|<\epsilon##.
\begin{align*}
|g(y)-g(y_0)|<\epsilon&\Leftrightarrow x_0-\epsilon<g(y)<x_0+\epsilon\\
&\Leftrightarrow f(x_0-\epsilon)<y<f(x_0+\epsilon)\\
&\Leftrightarrow f(x_0-\epsilon)-f(x_0)<y-f(x_0)<f(x_0+\epsilon)-f(x_0)\\
&\Leftrightarrow -(y_0-f(x_0-\epsilon))<y-y_0<f(x_0+\epsilon)-y_0\\
\end{align*}
If I let ##\delta=\min(y_0-f(x_0-\epsilon),f(x_0+\epsilon)-y_0)##, while considering small ##y##s, then I think that I have it right.
For decreasing ##f(x)##, I can flip the inequality symbols at the second step, and choose ##\delta=\min(f(x_0-\epsilon)-y_0,y_0-f(x_0+\epsilon))##.
Thanks!
We have a continuous, increasing and strictly monotonic function on ##[a, b]##, and ##x_0\in[a,b]##. Let ##g(y)## be its inverse, and ##f(x_0)=y_0##.
I want to show that ##|y-y_0|<\delta\implies|g(y)-g(y_0)|<\epsilon##.
\begin{align*}
|g(y)-g(y_0)|<\epsilon&\Leftrightarrow x_0-\epsilon<g(y)<x_0+\epsilon\\
&\Leftrightarrow f(x_0-\epsilon)<y<f(x_0+\epsilon)\\
&\Leftrightarrow f(x_0-\epsilon)-f(x_0)<y-f(x_0)<f(x_0+\epsilon)-f(x_0)\\
&\Leftrightarrow -(y_0-f(x_0-\epsilon))<y-y_0<f(x_0+\epsilon)-y_0\\
\end{align*}
If I let ##\delta=\min(y_0-f(x_0-\epsilon),f(x_0+\epsilon)-y_0)##, while considering small ##y##s, then I think that I have it right.
For decreasing ##f(x)##, I can flip the inequality symbols at the second step, and choose ##\delta=\min(f(x_0-\epsilon)-y_0,y_0-f(x_0+\epsilon))##.
Thanks!
Last edited: