- #1
tylerc1991
- 166
- 0
Homework Statement
Given two functions [itex] f [/itex] and [itex] g [/itex], if [itex] f [/itex] and [itex] g [/itex] are continuous at a point [itex] x [/itex], then the function [itex] h = fg [/itex] is continuous at [itex] x [/itex].
Homework Equations
Lemma 1
If a function [itex] f [/itex] is continuous at a point [itex] x [/itex], then f is bounded on some interval centered at [itex] x [/itex]. That is, there exists an [itex] M \geq 0 [/itex] and a [itex] \delta > 0 [/itex] such that for all [itex] y [/itex],
[itex] |x - y| < \delta \implies |f(y)| \leq M. [/itex]
The Attempt at a Solution
Let [itex] f [/itex] and [itex] g [/itex] be functions that are continuous at a point [itex] x [/itex].Define a new function [itex] h [/itex] as [itex] h = fg [/itex].
Let [itex] \varepsilon > 0 [/itex] and [itex] \delta_1 > 0 [/itex].
If [itex] f(x) = 0 [/itex], then it is trivially true that for all [itex] y [/itex],
[itex] \displaystyle |x - y| < \delta_1 \implies |f(x)||g(x) - g(y)| < \varepsilon, [/itex]
so assume [itex] f(x) \neq 0 [/itex].
Now, suppose [itex] \displaystyle \mu = \frac{\varepsilon}{|f(x)|} [/itex].
Clearly [itex] \mu [/itex] is a positive real number.
Since [itex] g [/itex] is continuous at [itex] x [/itex], for all [itex] \varepsilon [/itex], there exists a [itex] \delta_1 [/itex] such that
[itex] |x - y| < \delta_1 \implies |g(x) - g(y)| < \mu. \quad \quad (1) [/itex]
Let [itex] M = 0 [/itex]. Lemma 1 states that, since [itex] g [/itex] is continuous, there exists a [itex] \delta_2 > 0 [/itex] such that [itex] |x - y| < \delta_2 \implies |g(y)| \leq M = 0. [/itex] So,
[itex] |x - y| < \delta_2 \implies |g(y)| = 0. \quad \quad (2) [/itex]
Let [itex] \delta = \text{min}( \delta_1, \delta_2 ) [/itex]. Then [itex] |x - y| < \delta [/itex] implies
[itex] |h(x) - h(y)| = |f(x)g(x) - f(y)g(y)| [/itex]
[itex] = |f(x)g(x) - f(x)g(y) + f(x)g(y) - f(y)g(y)| [/itex]
[itex] \leq |f(x)g(x) - f(x)g(y)| + |f(x)g(y) - f(y)g(y)| [/itex]
[itex] = |f(x)||g(x) - g(y)| + |g(y)||f(x) - f(y)| [/itex]
[itex] < |f(x)| \mu + 0 = \varepsilon. [/itex] QED
Pointing out any mistakes / giving constructive criticism is welcome. Thank you very much!