- #1
Krizalid1
- 109
- 0
Let $A_{n\times n}$ be a matrix with real and distincts eigenvalues. Let $u(t,x_0)$ be a solution for the initial value problem $\overset{\cdot }{\mathop{x}}\,=Ax$ with $x(0)=x_0,$ then show that for each fixed $t\in\mathbb R,$ we have $$\lim_{y_0\to x_0}u(t,y_0)=u(t,x_0).$$