MHB Continuous Function Integration Challenge

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all continuous functions $f:[1,\,8] \rightarrow \mathbb{R} $ such that

$\displaystyle \int_1^2 f^2(t^3)dt + 2\int_1^2 f(t^3)dt=\dfrac{2}{3}\int_1^8 f(t)dt-\int_1^2 (t^2-1)^2 dt$
 
Mathematics news on Phys.org
Using the substitution $t=u^3$, we get

$\displaystyle \dfrac{2}{3} \int_1^8 f(t)dt=2\int_1^2 u^2f(u^3)du=2\int_1^2 t^2f(t^3)du$

Hence, by the assumptions,

$\displaystyle \int_1^2 [f^2(t^3)+(t^2-1)^2+2f(t^3)-2t^2f(t^3)] dt=0$

Since $f^2(t^3)+(t^2-1)^2+2f(t^3)-2t^2f(t^3)=[f(t^3)]^2+(1-t^2)^2+2(1-t^2)f(t^3)=[f(t^3)+1-t^2]^2\ge 0$, we get

$\displaystyle \int_1^2 [f(t^3)+1-t^2]^2 dt=0$

The continuity of $f$ implies that $f(t^3)=t^2-1,\,1\le t \le 2$ thus $f(x)=x^{\tiny\dfrac{2}{3}}-1,\,1 \le x \le 8$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top