- #1
ozkan12
- 149
- 0
Let $T$ be a continuous mapping of a complete metric space $X$ into itself such that ${T}^{k}$ is a contraction mapping of $X$ for some positive integer $k$. Then $T$ has a unique fixed point in $X$.
Proof:
${T}^{k}$ has a unique fixed point $u$ in $X$ and $u=\lim_{{n}\to{\infty}}\left({T}^{k}\right)^n{x}_{0}$ ${x}_{0}\in X$ arbitrary.
Also $\lim_{{n}\to{\infty}}\left({T}^{k}\right)^nT{x}_{0}=u$. Hence
$u=\lim_{{n}\to{\infty}}({T}^{k})^nT{x}_{0}$=$\lim_{{n}\to{\infty}}T\left({T}^{k}\right)^n{x}_{0}$ (2)
=$T\lim_{{n}\to{\infty}}\left({T}^{k}\right)^n{x}_{0}$
=$Tu$.İn this proof, I didnt understand, How (2) happened ? Please, can you explain ? Thank you for your attention...Best wishes...
Proof:
${T}^{k}$ has a unique fixed point $u$ in $X$ and $u=\lim_{{n}\to{\infty}}\left({T}^{k}\right)^n{x}_{0}$ ${x}_{0}\in X$ arbitrary.
Also $\lim_{{n}\to{\infty}}\left({T}^{k}\right)^nT{x}_{0}=u$. Hence
$u=\lim_{{n}\to{\infty}}({T}^{k})^nT{x}_{0}$=$\lim_{{n}\to{\infty}}T\left({T}^{k}\right)^n{x}_{0}$ (2)
=$T\lim_{{n}\to{\infty}}\left({T}^{k}\right)^n{x}_{0}$
=$Tu$.İn this proof, I didnt understand, How (2) happened ? Please, can you explain ? Thank you for your attention...Best wishes...