- #1
ktmsud
- 17
- 6
- TL;DR Summary
- How can we get continuous spectrum from a heated object? Can it be explained on the basis of electronic transition among various energy level?
My book says that emission spectra are produced when an electron in excited state jump from excited to lower energy states. It also states that solids and liquids produce continuous spectra and it depends upon temperature only (is this black body radiation?).
I know, Electrons around a nucleus in an atom can only have discrete energy level and in case of solids these energy level form continuous bands due to interactions. These energy bands have certain space between them, right?(e.g. in case of insulator there is forbidden gap between conduction band and valance band).Also electron very far from nucleus can have any energy. An electron can jump inside a band from one energy value to another or from one band to another band but it cannot have energy value of forbidden band. In this way there should be forbidden wavelength band.
So it confuses me, how a conductor and insulator can have similar emission spectrum at same temperature?
I know, Electrons around a nucleus in an atom can only have discrete energy level and in case of solids these energy level form continuous bands due to interactions. These energy bands have certain space between them, right?(e.g. in case of insulator there is forbidden gap between conduction band and valance band).Also electron very far from nucleus can have any energy. An electron can jump inside a band from one energy value to another or from one band to another band but it cannot have energy value of forbidden band. In this way there should be forbidden wavelength band.
So it confuses me, how a conductor and insulator can have similar emission spectrum at same temperature?
Last edited: