- #1
Ted123
- 446
- 0
I've tried this using the definition of a contour integral and Cauchy's residue theorem but get conflicting answers.
[itex]\displaystyle f(z) = \frac{z+1}{z(2z-1)(z+2)}[/itex]
We can parametrise the contour [itex]\gamma[/itex] (the unit circle) by [itex]\gamma(t) = e^{it}[/itex] for [itex]t \in [0, 2\pi ][/itex]
So by the definition of a contour integral
[itex]2\pi i \times I = \displaystyle \int^{2\pi}_0 \frac{e^{it}+1}{2e^{3it} + 3e^{2it} - 2e^{it}} \times ie^{it}\;dt = \frac{\pi i}{5}[/itex]
But using the residue therem
[itex]\displaystyle \text{res}(f,0) = -\frac{1}{2}[/itex]
[itex]\displaystyle \text{res} \left( f,\frac{1}{2} \right) = \frac{6}{5}[/itex]
[itex]\displaystyle \text{res} (f,-2) = -\frac{1}{10}[/itex]
[itex]\gamma[/itex] wraps once (in the negative direction) around [itex]z=0[/itex] and [itex]z=\frac{1}{2}[/itex] so [itex]n (\gamma, 0) = n (\gamma, \frac{1}{2}) = -1[/itex] and [itex]n (\gamma, -2) = 0[/itex]
So [itex]\displaystyle 2\pi i \times I = 2\pi i \left(-\frac{1}{2} \times -1 + \frac{6}{5} \times -1 \right) = -\frac{7\pi i}{5}[/itex]
which is not what I got before.