- #1
- 1,798
- 33
Suppose I want to compute tthe integral:
[tex]
\int_{-\infty}^{\infty}\frac{\textrm{sech}\hspace{0.1cm} x}{x^{2}-2|x|+1}dx
[/tex]
Can I compute this integral via contour integration? The only way that I have thought of is to split up the domain:
[tex]
\int_{-\infty}^{\infty}\frac{\textrm{sech}\hspace{0.1cm} x}{x^{2}-2|x|+1}dx=\int_{-\infty}^{0}\frac{\textrm{sech}\hspace{0.1cm} x}{x^{2}+2x+1}dx+\int_{0}^{\infty}\frac{\textrm{sech}\hspace{0.1cm} x}{x^{2}-2x+1}dx
[/tex]
Is this the best way I can go about things for is there a better way?
[tex]
\int_{-\infty}^{\infty}\frac{\textrm{sech}\hspace{0.1cm} x}{x^{2}-2|x|+1}dx
[/tex]
Can I compute this integral via contour integration? The only way that I have thought of is to split up the domain:
[tex]
\int_{-\infty}^{\infty}\frac{\textrm{sech}\hspace{0.1cm} x}{x^{2}-2|x|+1}dx=\int_{-\infty}^{0}\frac{\textrm{sech}\hspace{0.1cm} x}{x^{2}+2x+1}dx+\int_{0}^{\infty}\frac{\textrm{sech}\hspace{0.1cm} x}{x^{2}-2x+1}dx
[/tex]
Is this the best way I can go about things for is there a better way?