- #1
IchiCC
- 1
- 0
Homework Statement
Evaluate the integral
[itex]
I=\int^\pi_{-\pi} \frac{\,d\theta}{a+b\cos\theta+c\sin\theta}
[/itex]
where [itex]a[/itex], [itex]b[/itex], [itex]c[/itex] are real positive constants such that [itex]a^2>b^2+c^2>0[/itex]
Homework Equations
Residue theorem.
The Attempt at a Solution
Consider the complex function
[itex]f(z)=\frac{1}{az+\frac{1}{2}b(z^2+1)+\frac{1}{2i}c(z^2-1)}[/itex]
This has simple poles when denominator equals zero, i.e. at [itex]z=z_1[/itex] and [itex]z=z_2[/itex], where
[itex]z_1=\frac{-a+\sqrt{a^2-(b^2+c^2)}}{b-ic}[/itex] and [itex]z_2=\frac{-a-\sqrt{a^2-(b^2+c^2)}}{b-ic}[/itex]
by the quadratic formula. See that [itex]|z_2|>|z_1|\,\,\,\,\,\,(*)[/itex].
Note that
[itex]|z_1||z_2|=|z_1 z_2|=\left|\frac{b^2+c^2}{(b-ic)^2}\right|=1[/itex]
Referring back to [itex](*)[/itex] we see that [itex]|z_1|<1[/itex] and [itex]|z_2|>1[/itex].
[itex]\text{Res}[f(z), z_1]=lim_{z\to z_1}[(z-z_1)f(z)]=\frac{1}{z_1-z_2}=\frac{b-ic}{2 \sqrt{a^2-b^2-c^2}}[/itex]
Since [itex]z_1[/itex] is the only pole enclosed by the contour [itex]|z|=1[/itex], by the residue theorem:
[itex]\oint_{|z|=1}f(z)dz=2\pi i \text{Res}[f(z), z_1]\,\,\,\,\,\,(**)[/itex]
Along the contour [itex]|z|=1[/itex], we can write
[itex]z=e^{i\theta}[/itex]
[itex]dz=ie^{i\theta}d\theta[/itex] with [itex]\theta[/itex] in [itex][-\pi,\pi][/itex]
Then
[itex]\oint_{|z|=1}f(z)dz=\int^\pi_{-\pi}\frac{ie^{i\theta}}{ae^{i\theta}+\frac{1}{2}b(e^{2i\theta}+1)+\frac{1}{2i}c(e^{2i\theta}-1)}d\theta=i\int^\pi_{-\pi}\frac{1}{a+\frac{1}{2}b(e^{i\theta}+e^{-i\theta})+\frac{1}{2i}c(e^{i\theta}-e^{-i\theta})}d\theta=iI[/itex]
Returning to [itex](**)[/itex], we see that
[itex]I=2\pi\text{Res}[f(z), z_1]=\frac{b-ic}{\sqrt{a^2-b^2-c^2}}\pi[/itex]
4. Comments
This is clearly wrong since I can't have a complex solution to the real integral given, yet I've gone through my working countless times now and just can't spot my mistake... Maybe I'm just tired. Help would be much appreciated!