- #1
Arcon
- 1
- 0
Homework Statement
(i) Drawing a contour map for the function h(x.y) = -12-4x^2+16x-y^2-8y
(ii) (Continuing from i) at the point (1,-1,7) which direction to move to have
the maximum increase in height?
(iii) Find the point closest to the origin on the curve of intersection of the
plane 2y + 4z = 5 and the cone z^2= 4x^2 + 4y^2.
Homework Equations
(i) z = -12-4x^2+16x-y^2-8y (then I am stuck)
(iii) I got f = z <--(not sure if this is right),
g = 2y +4z = 5
and h = z^2= 4x^2 + 4y^2.
then gradient f = lambda * gradient g + mu * gradient h
The Attempt at a Solution
then from some caluculation i got two intersection point of (0,5/18,5/9) and (0, 1/10, 1/20) with (0, 1/10, 1/20) the point closest to the origin.