MHB Contraction mapping (Maryam Ishfaq's question at Yahoo Answers)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Contraction Mapping
AI Thread Summary
A contraction mapping T on a metric space is proven to be a continuous mapping due to its Lipschitz condition. Specifically, if T satisfies the Lipschitz condition with a constant K, then it can be shown that T is uniformly continuous. By choosing an appropriate delta in relation to epsilon, the continuity of T follows. Since a contraction is a special case of a Lipschitz mapping where K is less than 1, it inherently possesses continuity. Thus, every contraction mapping is confirmed to be continuous in the context of metric spaces.
Mathematics news on Phys.org
Hello Maryam Ishfaq,

The result is more general. Suppose $(E,d)$ is a metric space and $T:E\to E$ is a Lipschitz mapping, i.e. there is a positive constant $K$ such that $d(T(x),T(y))\le Kd(x,y)$ for all $x,y\in E$. Then, for all $\epsilon >0$ and choosing $\delta=\epsilon/K:$ $$d(x,y)<\delta \Rightarrow d(T(x),T(y))\le Kd(x,y)<K\frac{\epsilon}{K}\Rightarrow d(T(x),T(y))<\epsilon$$ This means that every Lipschitz mapping is uniformly continuous, as a consequence continuous. But a contraction map is a Lipschitz mapping with $K<1$, hence every contraction is a continuous mapping.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top