- #1
tmt1
- 234
- 0
For all integers $m$ and $n$, if $m+ n$ is even then $m$ and $n$ are both even or both odd.
For a contrapositive proof, I need to show that for all ints $m$ and $n$ if $m$ and $n$ and not both even and not both odd, then $ m + n $ is not even.
How do I go about doing this?
For a contrapositive proof, I need to show that for all ints $m$ and $n$ if $m$ and $n$ and not both even and not both odd, then $ m + n $ is not even.
How do I go about doing this?