- #1
rowardHoark
- 15
- 0
[URL]http://img28.mediafire.com/bacfa47633147eefb0c3433511d3f1415g.jpg[/URL]
1. Electrical system given. Find a transfer function. Correct answer UR(s)/U(s)=1/(s+2)
2. My attempt
Use Kirchhoff's voltage law u(t)-i(t)*R1-UR(t)=0; u(t)=i(t)R1+uR(t); apply Laplace Transform (L.T.) U(s)=I(s)R1+UR(s)
i(t)=i1(t)+i2(t)=1/L*[tex]\int[/tex]uR(t) dt+uR(t)/R2; take a L.T. assuming zero initial conditions I(s)=1/(L*s)*UR(s)+UR(s)/R2=UR(s)[1/(L*s)+1/R2]; since L=R1=R2=1 I(s)=UR(s)*(1/s+1); UR(s)=I(s)/(1/s+1)
H(s)=HR(s)/U(s)=[I(s)/(1/s+1)]/[I(s)R1+UR(s)]=[I(s)/(1/s+1)]/[I(s)+I(s)/(1/s+1)]=[1/(1/s+1)]/[1+1/(1/s+1)]=s/(1+2s)
Where am I making a mistake?
1. Electrical system given. Find a transfer function. Correct answer UR(s)/U(s)=1/(s+2)
2. My attempt
Use Kirchhoff's voltage law u(t)-i(t)*R1-UR(t)=0; u(t)=i(t)R1+uR(t); apply Laplace Transform (L.T.) U(s)=I(s)R1+UR(s)
i(t)=i1(t)+i2(t)=1/L*[tex]\int[/tex]uR(t) dt+uR(t)/R2; take a L.T. assuming zero initial conditions I(s)=1/(L*s)*UR(s)+UR(s)/R2=UR(s)[1/(L*s)+1/R2]; since L=R1=R2=1 I(s)=UR(s)*(1/s+1); UR(s)=I(s)/(1/s+1)
H(s)=HR(s)/U(s)=[I(s)/(1/s+1)]/[I(s)R1+UR(s)]=[I(s)/(1/s+1)]/[I(s)+I(s)/(1/s+1)]=[1/(1/s+1)]/[1+1/(1/s+1)]=s/(1+2s)
Where am I making a mistake?
Last edited by a moderator: