- #1
Hummingbird25
- 86
- 0
Hi
Looking at the series
[tex]\sum \limit_{n=1} ^{\infty} \frac{z^{n+1}}{n(n+1)}[/tex]
This series has the radius of Convergence R = 1.
Show that the series
converge for every [tex]z \in \{w \in \mathbb{C} | |w| \leq 1 \}[/tex]
And Secondly I need to show that
[tex]g(z) = \sum \limit_{n=1} ^{\infty} \frac{z^{n+1}}{n(n+1)}[/tex]
Is continius in [tex]z \in \{w \in \mathbb{C} | |w| \leq 1 \}[/tex]
Solution:
(1)
Since R = 1, then
[tex]\displaystyle \lim_{n \rightarrow \infty} b_n = \displaystyle \lim_{n \rightarrow \infty} \frac{1}{n(n+1)} = 0[/tex]
[tex]b_n = \displaystyle \lim_{n \rightarrow \infty} b_n = \displaystyle \lim_{n \rightarrow \infty} \frac{1}{(n+1)(n+1)+1} = b_{n +1} [/tex]
Therefore converge the [tex]z \in \{w \in \mathbb{C} | |w| \leq 1 \}[/tex]
(2) Doesn't that follow from (1) ?
Sincerely Yours
Hummingbird25
Looking at the series
[tex]\sum \limit_{n=1} ^{\infty} \frac{z^{n+1}}{n(n+1)}[/tex]
This series has the radius of Convergence R = 1.
Show that the series
converge for every [tex]z \in \{w \in \mathbb{C} | |w| \leq 1 \}[/tex]
And Secondly I need to show that
[tex]g(z) = \sum \limit_{n=1} ^{\infty} \frac{z^{n+1}}{n(n+1)}[/tex]
Is continius in [tex]z \in \{w \in \mathbb{C} | |w| \leq 1 \}[/tex]
Solution:
(1)
Since R = 1, then
[tex]\displaystyle \lim_{n \rightarrow \infty} b_n = \displaystyle \lim_{n \rightarrow \infty} \frac{1}{n(n+1)} = 0[/tex]
[tex]b_n = \displaystyle \lim_{n \rightarrow \infty} b_n = \displaystyle \lim_{n \rightarrow \infty} \frac{1}{(n+1)(n+1)+1} = b_{n +1} [/tex]
Therefore converge the [tex]z \in \{w \in \mathbb{C} | |w| \leq 1 \}[/tex]
(2) Doesn't that follow from (1) ?
Sincerely Yours
Hummingbird25
Last edited: