- #1
SqueeSpleen
- 141
- 5
[itex]f_{k} \overset{m}{\rightarrow} f[/itex] and [itex]g_{k} \overset{m}{\rightarrow} g[/itex] over [itex]E[/itex].
Then:
a)
[itex]f_{k} + g_{k} \overset{m}{\rightarrow} f+g[/itex] over [itex]E[/itex]
b)
If [itex]| E | < + \infty[/itex], then [itex]f_{k} g_{k} \overset{m}{\rightarrow} fg[/itex] over [itex]E[/itex]. Show that the hiphotesis [itex]| E | < + \infty[/itex] is neccesary
c) Let [itex]\{ \frac{f_{k}}{g_{k}} \}_{k \in \mathbb{N}}[/itex] a sequence of functions defined almost everywhere over [itex]E[/itex].
If [itex]| E | \rightarrow g[/itex] over [itex]E[/itex] and [itex]g \neq 0[/itex] almost everywhere, then [itex] \frac{f_{k}}{g_{k}} \overset{m}{\rightarrow} \frac{f}{g} [/itex] over [itex]E[/itex].
a)
[itex]g_{k} \overset{m}{\rightarrow} g[/itex] means
[itex]\forall \delta > 0 , \forall \varepsilon > 0 , \exists k_{0} / \forall k \geq k_{0}:[/itex]
[itex] | \{ | g - g_{k} | \geq \delta \} | < \varepsilon [/itex]
So for every [itex]\frac{\delta}{2} > 0, \frac{\varepsilon}{2} > 0[/itex] we have [itex]k^{'}_{0}, k^{''}_{0}[/itex] such that:
[itex]\forall k \geq k^{'}_{0} : | \{ | g - g_{k} | \geq \frac{\delta}{2} \} | < \frac{\varepsilon}{2} [/itex]
[itex]\forall k \geq k^{''}_{0} : | \{ | f - f_{k} | \geq \frac{\delta}{2} \} | < \frac{\varepsilon}{2} [/itex]
[itex]k_{0} = max \{ k^{'}_{0}, k^{''}_{0} \}[/itex]
Now this holds for all [itex]k \geq k_{0}[/itex]
Then
[itex]\forall k \geq k_{0} : | \{ | g - g_{k} | \geq \frac{\delta}{2} \} \cup \{ | f - f_{k} | \geq \frac{\delta}{2} \} | < \varepsilon [/itex]
(The measure of the union is equal or lesser than sum of measures).
[itex]\{ | (f - f_{k}) + (g - g_{k}) \geq \delta \} \subset \{ | f - f_{k} | + | g - g_{k} | \geq \delta \} \subset \{ | g - g_{k} | \geq \frac{\delta}{2} \} \cup \{ | f - f_{k} | \geq \frac{\delta}{2} \}[/itex]
Then for monotony of the measure:
[itex]\forall k \geq k_{0} | \{ | (f - f_{k}) + (g - g_{k}) \geq \delta \} | < \varepsilon[/itex]
b) I guess I can prove:
[itex]f_{k} \overset{m}{\rightarrow} f \Longrightarrow | f_{k} | \overset{m}{\rightarrow} |f |[/itex]
[itex]f=f^{+}-f^{-}[/itex] and [itex]| f | = f^{+} + f^{-}[/itex] (so it's easy, we only need to prove that if [itex]f_{k} \overset{m}{\rightarrow} f[/itex] then [itex]f^{\mp}_{k} \overset{m}{\rightarrow} f^{\mp}[/itex]
Then using that prove that if [itex]f_{k} \overset{m}{\rightarrow} f[/itex] then [itex]f^{2}_{k} \overset{m}{\rightarrow} f^{2}[/itex] (*)
And finally notice that [itex]fg = \frac{1}{4} [ (f+g)^{2} - (f-g)^{2} ][/itex] (Using also that if [itex]f_{k} \overset{m}{\rightarrow} f[/itex] then [itex]-f_{k} \overset{m}{\rightarrow} -f[/itex])
(*)
[itex]| f_{k} | \overset{m}{\rightarrow} | f |[/itex] means
[itex]\forall \delta > 0 , \forall \varepsilon > 0 , \exists k_{0} / \forall k \geq k_{0}:[/itex]
[itex] | \{ | | f | - | f_{k} | | \geq \delta \} | < \varepsilon [/itex]
What I thought was:
[itex]f^{2} - f^{2}_{k} = (\underbrace{f+f_{k}}_{\text{if }f <+\infty \text{ it tends to }2f})(\underbrace{f-f_{k}}_{ \to 0}) [/itex]
And later do something like this:
[itex] | \{ | f - f_{k} | \geq \frac{\delta}{f+f_{k}} \} | < \varepsilon [/itex]
But I realized that this doesn't make any sense at all because [itex]f+f_{k}[/itex] depends of the value of [itex]x[/itex].
Any hint?
Then:
a)
[itex]f_{k} + g_{k} \overset{m}{\rightarrow} f+g[/itex] over [itex]E[/itex]
b)
If [itex]| E | < + \infty[/itex], then [itex]f_{k} g_{k} \overset{m}{\rightarrow} fg[/itex] over [itex]E[/itex]. Show that the hiphotesis [itex]| E | < + \infty[/itex] is neccesary
c) Let [itex]\{ \frac{f_{k}}{g_{k}} \}_{k \in \mathbb{N}}[/itex] a sequence of functions defined almost everywhere over [itex]E[/itex].
If [itex]| E | \rightarrow g[/itex] over [itex]E[/itex] and [itex]g \neq 0[/itex] almost everywhere, then [itex] \frac{f_{k}}{g_{k}} \overset{m}{\rightarrow} \frac{f}{g} [/itex] over [itex]E[/itex].
a)
[itex]g_{k} \overset{m}{\rightarrow} g[/itex] means
[itex]\forall \delta > 0 , \forall \varepsilon > 0 , \exists k_{0} / \forall k \geq k_{0}:[/itex]
[itex] | \{ | g - g_{k} | \geq \delta \} | < \varepsilon [/itex]
So for every [itex]\frac{\delta}{2} > 0, \frac{\varepsilon}{2} > 0[/itex] we have [itex]k^{'}_{0}, k^{''}_{0}[/itex] such that:
[itex]\forall k \geq k^{'}_{0} : | \{ | g - g_{k} | \geq \frac{\delta}{2} \} | < \frac{\varepsilon}{2} [/itex]
[itex]\forall k \geq k^{''}_{0} : | \{ | f - f_{k} | \geq \frac{\delta}{2} \} | < \frac{\varepsilon}{2} [/itex]
[itex]k_{0} = max \{ k^{'}_{0}, k^{''}_{0} \}[/itex]
Now this holds for all [itex]k \geq k_{0}[/itex]
Then
[itex]\forall k \geq k_{0} : | \{ | g - g_{k} | \geq \frac{\delta}{2} \} \cup \{ | f - f_{k} | \geq \frac{\delta}{2} \} | < \varepsilon [/itex]
(The measure of the union is equal or lesser than sum of measures).
[itex]\{ | (f - f_{k}) + (g - g_{k}) \geq \delta \} \subset \{ | f - f_{k} | + | g - g_{k} | \geq \delta \} \subset \{ | g - g_{k} | \geq \frac{\delta}{2} \} \cup \{ | f - f_{k} | \geq \frac{\delta}{2} \}[/itex]
Then for monotony of the measure:
[itex]\forall k \geq k_{0} | \{ | (f - f_{k}) + (g - g_{k}) \geq \delta \} | < \varepsilon[/itex]
b) I guess I can prove:
[itex]f_{k} \overset{m}{\rightarrow} f \Longrightarrow | f_{k} | \overset{m}{\rightarrow} |f |[/itex]
[itex]f=f^{+}-f^{-}[/itex] and [itex]| f | = f^{+} + f^{-}[/itex] (so it's easy, we only need to prove that if [itex]f_{k} \overset{m}{\rightarrow} f[/itex] then [itex]f^{\mp}_{k} \overset{m}{\rightarrow} f^{\mp}[/itex]
Then using that prove that if [itex]f_{k} \overset{m}{\rightarrow} f[/itex] then [itex]f^{2}_{k} \overset{m}{\rightarrow} f^{2}[/itex] (*)
And finally notice that [itex]fg = \frac{1}{4} [ (f+g)^{2} - (f-g)^{2} ][/itex] (Using also that if [itex]f_{k} \overset{m}{\rightarrow} f[/itex] then [itex]-f_{k} \overset{m}{\rightarrow} -f[/itex])
(*)
[itex]| f_{k} | \overset{m}{\rightarrow} | f |[/itex] means
[itex]\forall \delta > 0 , \forall \varepsilon > 0 , \exists k_{0} / \forall k \geq k_{0}:[/itex]
[itex] | \{ | | f | - | f_{k} | | \geq \delta \} | < \varepsilon [/itex]
What I thought was:
[itex]f^{2} - f^{2}_{k} = (\underbrace{f+f_{k}}_{\text{if }f <+\infty \text{ it tends to }2f})(\underbrace{f-f_{k}}_{ \to 0}) [/itex]
And later do something like this:
[itex] | \{ | f - f_{k} | \geq \frac{\delta}{f+f_{k}} \} | < \varepsilon [/itex]
But I realized that this doesn't make any sense at all because [itex]f+f_{k}[/itex] depends of the value of [itex]x[/itex].
Any hint?
Last edited: