- #1
Manfred1999
- 5
- 0
Hi everyone,
I am generally familiar with convergent series. However, in one economics paper (Becker&Tomes 1979), I found the following that confuses me:$$\sum_{j=0}^{k} \beta^{j} h^{k-j} = \beta^{k}(k+1)\quad \text{if} \quad\beta =h$$
however,
$$\sum_{j=0}^{k} \beta^{j} j^{k-j} = \frac{\beta^{k+1}-h^{k+1}}{\beta-h}\text{if} \quad\beta \ne h$$In short, I do not understand how they derived at these convergences. Who has any idea that are they referring to? The text itself does not provide more information. And despite having consulted those maths references I can access, I could not find an answer.
Thank you very much for any hint.
Man
PS
I hope the formulae are depicted properly
I am generally familiar with convergent series. However, in one economics paper (Becker&Tomes 1979), I found the following that confuses me:$$\sum_{j=0}^{k} \beta^{j} h^{k-j} = \beta^{k}(k+1)\quad \text{if} \quad\beta =h$$
however,
$$\sum_{j=0}^{k} \beta^{j} j^{k-j} = \frac{\beta^{k+1}-h^{k+1}}{\beta-h}\text{if} \quad\beta \ne h$$In short, I do not understand how they derived at these convergences. Who has any idea that are they referring to? The text itself does not provide more information. And despite having consulted those maths references I can access, I could not find an answer.
Thank you very much for any hint.
Man
PS
I hope the formulae are depicted properly
Last edited: