- #1
bincy
- 38
- 0
Dear friends,
\(\displaystyle \sum_{x=1}^{\infty}\frac{1}{x}\) diverges.
But \(\displaystyle \sum_{x=1}^{\infty}\frac{1}{x^{2}}=\frac{\pi^{2}}{6}\)
How can we prove that \(\displaystyle \sum_{x=1}^{\infty}\left(\frac{1}{x^{\left(1+epsilon\right)}}\right)\) converges to a finite value?
Thanks in advance.
Bincy.
\(\displaystyle \sum_{x=1}^{\infty}\frac{1}{x}\) diverges.
But \(\displaystyle \sum_{x=1}^{\infty}\frac{1}{x^{2}}=\frac{\pi^{2}}{6}\)
How can we prove that \(\displaystyle \sum_{x=1}^{\infty}\left(\frac{1}{x^{\left(1+epsilon\right)}}\right)\) converges to a finite value?
Thanks in advance.
Bincy.