- #1
Beowulf2007
- 17
- 0
Convergens of Cesáros mean(Urgent).
I need to show the following:
(1) Let number sequence be given called [tex]\{\alpha_{n}\}_{n=1}^{\infty}[/tex] for which [tex]\alpha_{n} \rightarrow 0[/tex] where [tex]n \rightarrow \infty[/tex].
(2) Given a sequence [tex]\{\beta_{n}}\}_{n=1}^{\infty}[/tex] which is defined as [tex] \beta_{n}= \frac{\alpha_{1} + \alpha_{2} + \cdots + \alpha_{n}}{n}[/tex]
If (1) is true then [tex] \beta_{n} \rightarrow 0[/tex] for [tex]n \rightarrow 0[/tex] is likewise true.
The definition of convergens says (according to my textbook)
[tex]\forall \epsilon > 0 \exists N \in \mathbb{N} \forall n \in \mathbb{N}: n \geq N \Rightarrow |a_{n} - a| < \epsilon[/tex]
If I use that on part 1 of (1) then
[tex]|\alpha_{n} - 0| < \epsilon[/tex] [tex]\forall n \in \mathbb{N}[/tex] thus [tex]\alpha_{n}[/tex] converges.
Regarding part (2).
I get the inequality [tex]|\beta_{n}| < \epsilon[/tex] from the definition.
Am I missing something here?
Best Regards
Beowulf
Homework Statement
I need to show the following:
(1) Let number sequence be given called [tex]\{\alpha_{n}\}_{n=1}^{\infty}[/tex] for which [tex]\alpha_{n} \rightarrow 0[/tex] where [tex]n \rightarrow \infty[/tex].
(2) Given a sequence [tex]\{\beta_{n}}\}_{n=1}^{\infty}[/tex] which is defined as [tex] \beta_{n}= \frac{\alpha_{1} + \alpha_{2} + \cdots + \alpha_{n}}{n}[/tex]
If (1) is true then [tex] \beta_{n} \rightarrow 0[/tex] for [tex]n \rightarrow 0[/tex] is likewise true.
The Attempt at a Solution
The definition of convergens says (according to my textbook)
[tex]\forall \epsilon > 0 \exists N \in \mathbb{N} \forall n \in \mathbb{N}: n \geq N \Rightarrow |a_{n} - a| < \epsilon[/tex]
If I use that on part 1 of (1) then
[tex]|\alpha_{n} - 0| < \epsilon[/tex] [tex]\forall n \in \mathbb{N}[/tex] thus [tex]\alpha_{n}[/tex] converges.
Regarding part (2).
I get the inequality [tex]|\beta_{n}| < \epsilon[/tex] from the definition.
Am I missing something here?
Best Regards
Beowulf
Last edited: