- #1
dikmikkel
- 168
- 0
Homework Statement
Consider the 2[itex]\pi[/itex]-periodic function f(t) = t t in [-Pi;Pi]
a) show that the real fouier series for f(t) is:
[itex]f(t) ~ \sum\limits_{n=1}^{\infty}\frac{2}{n}(-1)^{n+1}\sin nt[/itex]
b)
Use the answer to evaluate the following : [itex]\sum\limits_{n=1}^{\infty}\dfrac{(-1)^{n+1}}{2n-1}[/itex]
Hint: Use Fouier's law with t = [itex]\pi[/itex]/2
Homework Equations
Fouiers Law? I'm danish, and therefore I'm not really sure what it's called.
The Attempt at a Solution
Part a i have done by finding the coefficients.
Part b) I can't see where the problem in part b and the answer to a relates. I've tried with Maple 15 to calculate the value and I'm getting Pi/4, but i keep getting something different for the series from a)
Please Help me, i would really like to understand this as I'm studying physics.
Last edited: