- #1
Apteronotus
- 202
- 0
For an infinite sum, is the limit of the sum = sum of the limit?
ie.
[tex]
lim_{x \rightarrow a} \sum_{n=0}^\infty f(x,n)= \sum_{n=0}^\infty lim_{x \rightarrow a}f(x,n)
[/tex]
ie.
[tex]
lim_{x \rightarrow a} \sum_{n=0}^\infty f(x,n)= \sum_{n=0}^\infty lim_{x \rightarrow a}f(x,n)
[/tex]