- #1
Euge
Gold Member
MHB
POTW Director
- 2,073
- 244
Let ##\{X_n\}## be a sequence of integrable, real random variables on a probability space ##(\Omega, \mathscr{F}, \mathbb{P})## that converges in probability to an integrable random variable ##X## on ##\Omega##. Suppose ##\mathbb{E}(\sqrt{1 + X_n^2}) \to \mathbb{E}(\sqrt{1 + X^2})## as ##n\to \infty##. Show that ##X_n\xrightarrow{L^1} X##.