- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
I want to check the convergence of the sequences $\left( \left( 1+\frac{1}{\sqrt{n}}\right)^n\right)$, $\left( \left( 1+\frac{1}{2n}\right)^n\right)$.
We know that $e^x=\lim_{n \to +\infty} \left( 1+\frac{x}{n}\right)^n$.
We have that $\lim_{n \to +\infty} \left( 1+\frac{1}{\sqrt{n}}\right)^n=\lim_{n \to +\infty} \left( \left( 1+\frac{1}{\sqrt{n}}\right)^{\sqrt{n}}\right)^{\sqrt{n}}$.
Is the latter equal to $\lim_{n \to +\infty} e^{\sqrt{n}}=+\infty$ ?
So does it hold that $\lim_{n \to +\infty} \left( \left( 1+\frac{1}{\sqrt{n}}\right)^{\sqrt{n}}\right)^{\sqrt{n}}=\lim_{n \to +\infty} \left( \lim_{n \to +\infty}\left( 1+\frac{1}{\sqrt{n}}\right)^{\sqrt{n}}\right)^{\sqrt{n}} $ ?
If so, why? (Thinking)
I want to check the convergence of the sequences $\left( \left( 1+\frac{1}{\sqrt{n}}\right)^n\right)$, $\left( \left( 1+\frac{1}{2n}\right)^n\right)$.
We know that $e^x=\lim_{n \to +\infty} \left( 1+\frac{x}{n}\right)^n$.
We have that $\lim_{n \to +\infty} \left( 1+\frac{1}{\sqrt{n}}\right)^n=\lim_{n \to +\infty} \left( \left( 1+\frac{1}{\sqrt{n}}\right)^{\sqrt{n}}\right)^{\sqrt{n}}$.
Is the latter equal to $\lim_{n \to +\infty} e^{\sqrt{n}}=+\infty$ ?
So does it hold that $\lim_{n \to +\infty} \left( \left( 1+\frac{1}{\sqrt{n}}\right)^{\sqrt{n}}\right)^{\sqrt{n}}=\lim_{n \to +\infty} \left( \lim_{n \to +\infty}\left( 1+\frac{1}{\sqrt{n}}\right)^{\sqrt{n}}\right)^{\sqrt{n}} $ ?
If so, why? (Thinking)