- #1
wanchosen
- 19
- 0
I am having problems with the following question:
Using an appropriate convergence test, find the values of x [tex]\in[/tex] R for which the following series is convergent:
([tex]\sum[/tex]nk=1 1/ekkx)n
I used the ratio test to solve this but I'm not so sure about my solution:
n1 = [tex]\frac{1}{e}[/tex]
n2 = [tex]\frac{1}{e}[/tex] + [tex]\frac{1}{e^2 * 2^x}[/tex]
n3 = [tex]\frac{1}{e}[/tex] + [tex]\frac{1}{e^2 * 2^x}[/tex] + [tex]\frac{1}{e^3 * 3^x}[/tex]
n4 = [tex]\frac{1}{e}[/tex] + [tex]\frac{1}{e^2 * 2^x}[/tex] + [tex]\frac{1}{e^3 * 3^x}[/tex] + [tex]\frac{1}{e^4 * 4^x}[/tex]
[tex]\sum all n[/tex] = [tex]\frac{n}{e}[/tex] + [tex]\frac{n-1}{e^2*2^x}[/tex] + [tex]\frac{n-2}{e^3*3^x}[/tex]
So,
Un = [tex]\sum[/tex]nn=1 [tex]\frac{n-(k-1)}{e^k*k^x}[/tex] = [tex]\frac{n-(k-1)}{e^n*n^x}[/tex]
Un+1 = [tex]\sum[/tex]nk=1 [tex]\frac{(n+1)-(k-1)}{e^n*n^x}[/tex] = [tex]\frac{n-k+2}{e^(n+1) * (n+1)^x}[/tex]
n-->[tex]\infty[/tex]
Un+1/Un = [tex]\frac{(n-k+2)n^x}{(n-k+1)*(n+1)^x}[/tex]
divide by n
= [tex]\frac{((1-(k/n))n^(x-1)}{(1-(k/n)+(1/n)*((n+1)^x)/n}[/tex]
Lim[tex]\infty[/tex] nx-1 if convergent
|nx-1| < 1
so,
x-1 < 0
x < 1
Does this look right?
Using an appropriate convergence test, find the values of x [tex]\in[/tex] R for which the following series is convergent:
([tex]\sum[/tex]nk=1 1/ekkx)n
I used the ratio test to solve this but I'm not so sure about my solution:
n1 = [tex]\frac{1}{e}[/tex]
n2 = [tex]\frac{1}{e}[/tex] + [tex]\frac{1}{e^2 * 2^x}[/tex]
n3 = [tex]\frac{1}{e}[/tex] + [tex]\frac{1}{e^2 * 2^x}[/tex] + [tex]\frac{1}{e^3 * 3^x}[/tex]
n4 = [tex]\frac{1}{e}[/tex] + [tex]\frac{1}{e^2 * 2^x}[/tex] + [tex]\frac{1}{e^3 * 3^x}[/tex] + [tex]\frac{1}{e^4 * 4^x}[/tex]
[tex]\sum all n[/tex] = [tex]\frac{n}{e}[/tex] + [tex]\frac{n-1}{e^2*2^x}[/tex] + [tex]\frac{n-2}{e^3*3^x}[/tex]
So,
Un = [tex]\sum[/tex]nn=1 [tex]\frac{n-(k-1)}{e^k*k^x}[/tex] = [tex]\frac{n-(k-1)}{e^n*n^x}[/tex]
Un+1 = [tex]\sum[/tex]nk=1 [tex]\frac{(n+1)-(k-1)}{e^n*n^x}[/tex] = [tex]\frac{n-k+2}{e^(n+1) * (n+1)^x}[/tex]
n-->[tex]\infty[/tex]
Un+1/Un = [tex]\frac{(n-k+2)n^x}{(n-k+1)*(n+1)^x}[/tex]
divide by n
= [tex]\frac{((1-(k/n))n^(x-1)}{(1-(k/n)+(1/n)*((n+1)^x)/n}[/tex]
Lim[tex]\infty[/tex] nx-1 if convergent
|nx-1| < 1
so,
x-1 < 0
x < 1
Does this look right?