- #1
emilkh
- 7
- 0
Show [tex]
\sum_1^\infty\frac{x^n}{1+x^n} [/tex] converges when x is in [0,1)
[tex]
\sum_1^\infty\frac{x^n}{1+x^n} = \sum_1^\infty\frac{1}{1+x^n} * x^n <= \sum_1^\infty\frac{1}{1} * x^n = \sum_1^\infty x^n [/tex]
The last sum is g-series, converges since r = x < 1
\sum_1^\infty\frac{x^n}{1+x^n} [/tex] converges when x is in [0,1)
[tex]
\sum_1^\infty\frac{x^n}{1+x^n} = \sum_1^\infty\frac{1}{1+x^n} * x^n <= \sum_1^\infty\frac{1}{1} * x^n = \sum_1^\infty x^n [/tex]
The last sum is g-series, converges since r = x < 1