I Converse of focus-directrix property of conic sections

AI Thread Summary
The discussion explores the focus-directrix property of conic sections, emphasizing that the distance from a fixed point (focus) is proportional to the distance from a fixed line (directrix), with eccentricity as the proportionality constant. The inquiry centers on whether the converse is true: if a locus of points adheres to the focus-directrix property, does it necessarily represent a conic section derived from a cone? Participants are encouraged to compare the equations of general conic sections with those of plane curves satisfying the focus-directrix property. The conversation also seeks to clarify the conditions that define the equations for conic sections. Establishing this equivalence could deepen the understanding of conic sections in geometry.
arham_jain_hsr
Messages
25
Reaction score
9
TL;DR Summary
If the locus of some points follows the focus-directrix property, then is the curve ALWAYS the cross-section of a cone?
In my recent study of Conic Sections, I have come across several proofs (many of those comprise Dandelin spheres) showing that the cross-section of a cone indeed follows the focus-directrix property:

"For a section of a cone, the distance from a fixed point (the focus) is proportional to the distance from a fixed line (the directrix), the constant of proportionality being called the eccentricity."

But, in order to truly establish equivalence between the two definitions of the conic sections, I am curious to know whether the converse of this is also true. That is, if the locus of some points follows the focus-directrix property, then is the curve ALWAYS the cross-section of a cone?
 
Mathematics news on Phys.org
You can calculate the equation of a general conic section in the plane of the section.

You can calculate the equation of a general plane curve that satisfies the focus-directrix property.

Now compare the two.
 
pasmith said:
You can calculate the equation of a general conic section in the plane of the section.

You can calculate the equation of a general plane curve that satisfies the focus-directrix property.

Now compare the two.
For the focus-directrix property, the equations are fairly obvious, that the point should have a certain ratio with the focus and directrix. What are the conditions that govern the formation of equations for the section of a cone definition?
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top