Conversion factor when converting from SI to natural units

In summary, the conversion factor when converting from SI (International System of Units) to natural units involves expressing physical quantities in terms of fundamental constants, such as the speed of light (c), Planck's constant (h), and the gravitational constant (G). This process often simplifies equations by eliminating dimensional constants, allowing for a more straightforward representation of physical laws. Natural units are particularly useful in theoretical physics, as they provide a more intuitive understanding of the relationships between different physical quantities.
  • #1
Dex_
3
0
Homework Statement
I'm trying to answer this question from my particle physics lab, I can obtain the equation quite easily by using the definition of the force as rate of change of momentum and equating it to the Lorentz force, but I cannot get the factor of 0.3 from unit conversions. I've also attached the experimental diagram of the problem.

"Show that, for a dipole magnetic field in y direction and an initial momentum in
z direction, the change in the x component of the momentum in units of GeV/c is given
by

$$\Delta p_{x} = 0.3 q \int B_{y} dz$$

with ##q## the particle charge in units of e. You may assume that ##p_{z} \gg p_x##."

p.s - sorry if my post is formatted wrong this is my first homework post, pleass point out my mistakes in the replies.
Relevant Equations
##c = 3 \times 10^{8} m \, s^{-1}##
##GeV = 1.602 \times 10^{-10} J##
For the right hand side I expressed each of the quantities in SI units,


$$C \cdot \frac{kg}{A \cdot s^{2}} \cdot m$$


Then substitute newtons in as ##N = kg \cdot ms^{-2}## and we get,


$$C \cdot \frac{N}{A \cdot m} \cdot m$$


Using the definition of work as ##J = N \cdot m## and Amperes as ##C \cdot s^{-1}## we get,


$$ C \cdot \frac{J}{C \cdot s^{-1} \cdot m^{2}} \cdot m $$


Then after cancelling we are left with,


$$\frac{J}{m \, s^{-1}}$$


To convert from Joules to GeV we divide by ##1.602 \times 10^{-10}## and to get it into units of c we multiply by ##3 \times 10^{8}##.


However the factor I am left with is,


$1.875 \times 10^{18}$


I can actually see how we could get the 0.3 if we divide ##3 \times 10^{8}## by ##10^{9}##, but I don't see how to get there. I also don't see how the units of charge in terms of ##e## helps if charge is being cancelled out anyways.

Screenshot 2024-09-28 130328.png
 
Last edited by a moderator:
Physics news on Phys.org
  • #2
Note that ##q## is the charge in units of ##e##.
 
Last edited:
Back
Top