- #1
W3bbo
- 31
- 0
Homework Statement
Reduce these parametric functions to a single cartesian equation:
[tex]
$\displaylines{
x = at^2 \cr
y = 2at \cr} $
$\displaylines{
x = 3{\mathop{\rm Sec}\nolimits} \left( \alpha \right) \cr
y = 5{\mathop{\rm Tan}\nolimits} \left( \alpha \right) \cr} $
$\displaylines{
x = t^2 + 1 \cr
y = t^2 + t \cr} $
[/tex]
Homework Equations
N/A
The Attempt at a Solution
For Q1, I think I got the hang of it... in that the plots of my cartesian and the paremetric are identical:
[tex]
$\displaylines{
x = at^2 \cr
y = 2at \cr
\cr
t^2 = {x \over a} \cr
t = \sqrt {{x \over a}} \cr
\cr
y = 2a\sqrt {{x \over a}} \cr} $
[/tex]
For Q2 I thought I had it solved with a trigonometric identity, but the plots look different:
[tex]
$\displaylines{
x = 3{\mathop{\rm Sec}\nolimits} \left( \alpha \right) \cr
y = 5{\mathop{\rm Tan}\nolimits} \left( \alpha \right) \cr
\cr
{\mathop{\rm Sec}\nolimits} ^2 \left( \alpha \right) = 1 + {\mathop{\rm Tan}\nolimits} ^2 \left( \alpha \right) \cr
\left( {{\textstyle{1 \over 3}}x} \right)^2 = 1 + \left( {{\textstyle{1 \over 5}}y} \right)^2 \cr
{\textstyle{1 \over 9}}x^2 = 1 + {\textstyle{1 \over {25}}}y^2 \cr
{\textstyle{1 \over {25}}}y^2 = {\textstyle{1 \over 9}}x^2 - 1 \cr
y^2 = {\textstyle{{25} \over 9}}x^2 - 1 \cr
y = \pm \sqrt {{\textstyle{{25} \over 9}}x^2 - 1} \cr} $
[/tex]
Finally, Q3 seems deceptivly simple, but again, the plot doesn't match the original:
[tex]
$\displaylines{
x = t^2 + 1 \cr
y = t^2 + t \cr
\cr
t^2 = x - 1 \cr
y = x - 1 + \sqrt {x - 1} \cr} $
[/tex]
I'm not looking for answers, just to find out where I've gone wrong.
Thanks